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Abstract

In the ongoing efforts targeting the vectorization of lin-
ear algebra primitives, sparse matrix-matrix multiplication
(SpGEMM) has received considerably less attention than
sparse Matrix-Vector multiplication (SpMV). While both are
equally important, this disparity can be attributed mainly to
the additional formidable challenges raised by SpGEMM.

In this paper, we present a dynamic approach for address-
ing SpGEMM on the GPU. Our approach works directly on
the standard compressed sparse rows (CSR) data format. In
comparison to previous SpGEMM implementations, our ap-
proach guarantees a homogeneous, load-balanced access
pattern to the first input matrix and improves memory ac-
cess to the second input matrix. It adaptively re-purposes
GPU threads during execution and maximizes the time effi-
cient on-chip scratchpad memory can be used. Adhering to a
completely deterministic scheduling pattern guarantees bit-
stable results during repetitive execution, a property missing
from other approaches. Evaluation on an extensive sparse
matrix benchmark suggests our approach being the fastest
SpGEMM implementation for highly sparse matrices (80%
of the set). When bit-stable results are sought, our approach
is the fastest across the entire test set.

CCS Concepts « Theory of computation — Massively
parallel algorithms; - Computing methodologies — Lin-
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1 Introduction

Generalized sparse matrix-matrix multiplication (Sp GEMM)
is one of the key kernels in scientific computing and data
analytics, e.g., in algebraic multigrid solvers [5], Schur com-
plement methods [25], betweenness centrality [6] and cycle
detection [26]. Algorithmically, SpPGEMM consists of build-
ing the output matrix C from the product of two sparse input
matrices A and B, given by

Cij = ZAik - Bgjs (1)

k

where k spans the colliding non-zeros of the i-th row of
A and j-th column of B. In the sequential setting, efficient
treatment of Sp)GEMM dates back to the pioneering work of
Gustavson [18]. As the computing landscape shifts towards
ubiquitous parallelism, there is a pressing need for equiva-
lently efficient approaches on modern many-core processors.

Among existing many-core architectures, the graphics pro-
cessing unit (GPU) is of particular interest. It has emerged as
a viable and cost-effective co-processor in both single work-
stations and large supercomputing clusters. As the GPU is
primarily designed for massively parallel, uniform execution
and memory access, achieving good speedups on unstruc-
tured problems such as SpGEMM remains a challenge.

To provide context to the ensuing discussion, we assume
matrices are given in the compressed sparse row (CSR) for-
mat, which is probably the most common format in use.
Entries are sorted according to rows and their values and col-
umn ids are explicitly stored. An additional row pointer array
indicates the beginning of each row in the sorted arrays.

Challenges The challenges of SpGEMM on the GPU stem
from multiple factors. First, the number of entries in each
row of A and B may vary strongly. This disparity complicates
load balancing, as threads may easily receive vastly different
work loads, which is especially difficult to manage on single
instruction, multiple data (SIMD) devices like GPUs.
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Second, there is no way to predict the number of interme-
diate products (A;x - Bx;) without inspecting the matrices.
This makes it difficult to perform intermediate computations
within efficient on-chip memory, as it may easily overflow.

Third, memory access patterns are paramount on the GPU.
Due to the nature of SpGEMM, the sparsity pattern and
content of both matrices A and B determine the memory
access pattern throughout computations.

Strategies Without loss of generality, the landscape of GPU
SpGEMM is dominated by the following strategies

o ESC: explicitly expand all temporary products, sort them
and combine them to yield the final matrix [5, 7-9].

o Hashing: merge temporary products either in scratchpad
memory or globally using hashing (3, 22, 23].

e Merging and Hybrid: choose a fitting method for each
row [17, 19, 20].

Most of these approaches are designed with only one or
two of the challenges discussed earlier in mind. The ESC
strategy achieves excellent load balancing at the cost of
high intermediate memory. In fact, in its original form all
intermediate products go through slow global GPU mem-
ory. Similarly, hashing is notoriously slow in global memory.
Operating (partially) in scratchpad memory can increase
performance of both approaches. Relying on smart global
scheduling [7, 22], overflow of scratchpad memory can be
avoided. However, this entails a complete matrix inspection
(which can consume up to 30% runtime; cf. [22] fig. 6). One
major drawback of hashing is that the accumulation order
depends on the hardware scheduler and thus might yield
different floating point errors during each run.

Merge-based approaches and hybrids focus on prepro-
cessing and row-based scheduling. This may lead to a large
number of temporary matrices and significant preprocessing
effort. Furthermore, memory access patterns may deteriorate
by switching strategies. Again, for this kind of scheduling
the matrices need to be inspected fully.

Contribution We propose anew GPUSpGEMM algorithm
that tackles the challenges outlined above in a comprehen-
sive way and at the same time cuts down on overhead com-
putations throughout all stages. To this end, we make the
following contributions:

e an efficient global load balancing scheme based solely
on the non-zeros of A. It avoids costly inspection of the
involved matrices and achieves entirely uniform load
balancing in practice.

e a dynamic work distribution which achieves perfect lo-
cal load balancing within a block of threads throughout
multiple iterations of ESC, mixing partial results with
new input.
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e an efficient local adaption of the ESC algorithm which op-
erates within scratchpad memory and allows combining
temporary results to a complete subset of C.

e chunk-based storage of partial results of C.
o an efficient, adaptive merge algorithm for partial results.

e an adaptive approach to handle long rows of B efficiently.

2 Related work

In the sequential treatment of the problem, the output matrix
is filled one row at a time by means of a large bookkeeping ar-
ray aka sparse accumulator (SPA) [10, 15, 18]. As the sparsity
pattern of C is not known prior to execution, a preliminary
pass for memory allocation counts the number of non-zeros
of C and a secondary pass computes the entries.

Over the years many strategies have been proposed to
adapt SpGEMM to modern parallel architectures. They vary
mainly in the way the operations in Eq. 1 are partitioned
among A, B, and C. The classification by Ballard et al. [4] of-
fers an elegant dimensionality-based interpretation of strate-
gies by mapping operations to the cube A xBxC. Within this
classification, problems are amenable to solving the underly-
ing hypergraph partitioning. However, the more elaborate
the partition, the more preprocessing effort is needed.

The multi-threaded approach by Patwary et al. [24] re-
duces cache misses by blocking accesses to the SPA. It searches
for adequate block partitioning of the columns of B and fills
individual blocks of C independently. In the same spirit, Ak-
budak and Aykanat [1] rely on row-wise partitioning of A
to exploit locality in accessing the rows of B.

The approach by Bell et al. [5], implemented in CUSP [8],
breaks the processing into expansion, sorting, and compres-
sion (ESC). This translates into generating a list of interme-
diate products which are sorted by row and column index
and falls within the 3D category. The output is generated
by contracting entries with the same indices. Optimizations
take into account the sparsity patterns of A and B to improve
the row-wise processing of C [9]. Another variant performs
ESC locally before merging the results globally [7] at the cost
of increased load balancing effort. While we also perform
ESC locally, the major advantage of our approach is that
we use dynamic scheduling to perform multiple ESC itera-
tions before going to global memory, considerably reducing
memory bandwidth, global sorting and compaction costs.

Adopting a partial 1D row-wise strategy, rows from B
can directly be merged, even on the GPU [16]. The RMerge
approach [17] optimizes this merge strategy by ensuring op-
erations are completed in efficient memory. This constraint
is enforced by splitting B into multiple matrices with limited
row length and iteratively computing the product of these
matrices from right to left. In the bhSparse approach [20]
rows are grouped by the number of intermediate products
and then a merge-based strategy is adaptively selected based
on the number of intermediate products. They also compare
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against a CPU implementation based on Intel MKL and show
average speed up of 2.5/2.2 for single/double precision.

In a similar spirit, the approach by Kunchum et al. [19]
selects different strategies depending on the row structure.
SpGEMM can be also addressed using hash tables. An early
approach [12] keeps a primary hash table in scratchpad mem-
ory and a secondary in global memory. An implementation of
this approach is used within cuSparse [23]. Deveci et al. [13]
also uses a dual hash table approach, whereas global hash
tables are only used temporarily and are reclaimed. The Bal-
ancedHash approach [3] restricts itself to local hash tables
and avoids overflows using “better size estimates” [2].

nsparse [22] follows these approaches and addresses the
memory problem by grouping rows based on intermediate
products and thus can construct hash tables with different
sizes. Deveci et al. [14] build on their previous work [13]. In
particular, they combine partitioning for hierarchical paral-
lelism with the use of a two-level hash data structure.

One downside of hash-based approaches is their non-
deterministic compaction order leading to different floating
point errors during each run.

3 Adaptive SpGEMM

Our adaptive chunk-based GPU SpGEMM approach (AC-
SpGEMM) focuses on four major goals

1. performing computations in local on-chip memory
2. coherent memory access

3. independence of row lengths

4. ensuring deterministic results

To achieve these goals, AC-SpGEMM follows a four stage
approach, as outlined in Figure 2. In the first stage, AC-
SpGEMM prepares data for global load balancing. In the
second stage, we perform chunk-based ESC, producing de-
terministically bit-stable results. With the help of our local
work distribution, this stage performs multiple iterations of
ESC, fully utilizing local memory resources while keeping
temporary results in scratchpad memory. Merging of rows
shared across chunks happens in the third stage. Finally, in
the fourth stage, we allocate the output matrix C and fill it
with data from the chunks.
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Figure 1. Average non-zeros per row for the SuiteSparse
matrix collection, min and max overlayed and clamped.
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Figure 2. Our approach has four consecutive stages: global
load balancing follows a strict non-zero splitting of A; our
AC-ESC step performs the major part of the Sp GEMM, com-
puting entire chunks of C; merge combines the rows shared
across chunks before the data is copied to C.

Before discussing the details of each stage, we motivate
some design choices. Analysing the row length of matrices
from the SuiteSparse matrix collection [11], it can be ob-
served that the majority of matrices in common problem
domains have average row lengths of less than 200 elements,
cf. Figure 1. Considering register sizes of current GPUs and
reasonably small thread block sizes, up to 4000 temporary
elements can be held by each block. If there is reasonable
overlap between rows, the resulting output can be stored in
scratchpad memory for another iteration of ESC. Given 200
entries per row, ideally another 3800 temporary elements
can be loaded and compacted. In the best case, these local
load and compaction steps continue until yielding completed
rows of C, without ever going through slow global memory.

3.1 Global Load Balancing

Previous SpGEMM approaches adopt one of two strategies
for load balancing. (1) They bin the rows of A according to
their lengths [20] and choose an appropriate algorithm for
each category. This strategy may pull apart sequential rows
in A, severing memory access patterns to A and C.

(2) They analyze the number of temporary products that
will be produced and distribute them uniformly [3, 7, 22].
This approach needs to analyse the entire temporary data
and write identifiers to global memory. The relative cost
of load balancing increases with the sparsity of the input
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Algorithm 1: Global Load Balancing

1 a « row_ptr(tid]

2 b« row_ptr[tid + 1]

3 blocka « divup(a, NNZ_PER_BLOCK)
4 blockb — (b - 1)/NNZ_PER_BLOCK

5 while blocka < blockb do

6 L blockRowStarts|blocka] « tid

7

blocka « blocka + 1

matrices. According to our analysis and the cost break down
given by Nagasaka et al. [22], load balancing can consume
up to 30% of the overall runtime for very sparse matrices.

To tackle the drawbacks of both strategies, we propose
a simple global load balancing scheme and defer the fine
grained control to the next stage. Our global load balancing
splits the non-zeros of A uniformly, assigning the same num-
ber to each thread block. In this way, memory requirements
from A are static. However, the actual workload for each
block varies based on the intermediate products generated.

While a static splitting of A’s non-zeros does not require
processing, the second stage still needs to associate each
entry from A with a row. To provide this information, global
load balancing in parallel checks A’s row pointers and writes
the required information into an auxiliary array, as outlined
in Algorithm 1. The cost of this step is negligible compared
to enumerating temporary products.

3.2 Adaptive Chunk-based ESC

Each thread block executing the second stage is assigned
an equally sized portion of A and performs Sp GEMM with
B. Depending on the sparsity pattern, it can produce any
number of output chunks, each representing a partial result
of C. We propose an adaption of ESC due to its desirable
properties to perform SpGEMM. First, after the expansion
of the temporary products, every thread performs identi-
cal work independent of which row the data comes from.
Second, sort can efficiently be implemented within a block,
using Radix sort [21]. Third, a stable sort algorithm always
yields identical floating point results, free of the problematic
scheduling-based effects encountered when using hashing.

The downside of ESC is that sorting intermediate data is
more costly than sorting the output data. However, dealing
with only a chunk of data at once and keeping all data lo-
cal, the cost is significantly lower than sorting all temporary
elements of the entire product A-B. While other local ESC ap-
proaches have been proposed before (7, 9, 20], they operate
on individual rows or a fixed number of temporary prod-
ucts and then always go to global memory. Our approach
completely ignores row boundaries and performs multiple
iterations of ESC locally, dynamically splitting off completed
rows. We only move to global memory after completion or
when data cannot be compacted sufficiently.
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3.2.1 Fetch A

The first step in AC-ESC fetches non-zeros and column ids of
A required by the thread block, using a coalesced read pattern.
We store this data in scratchpad memory to be available
throughout the entire stage. While coalesced loading of A
is less important for denser matrices where the loads from
B dominate, it is important for very sparse matrices where
loads from B are similar in count. In addition, the row ids
for all non-zeros in A are needed. As NNZ_PER_BLOCK is
constant, we can reduce the bit length of these row ids by
locally remapping them: Using a dictionary we use the index
of the first non-zero in that row as local row id.

3.2.2 Local Work Distribution

The most important component in AC-ESC is the local work
distribution. As the number of intermediate products pro-
cessed by a block of threads varies, we have to dynamically
decide which elements to load to exactly fill up the available
resources. While inspecting B for global load balancing is
costly, inspecting B now comes with little additional cost
as it needs to be accessed anyway. Thus, after loading each
column index of A, we retrieve the number of elements to
be fetched from B for every entry in A.

To determine which elements to load, we propose an ex-
panding work distribution that dynamically supplies local
ESC with data. The work distribution offers three meth-
ods: placework, size, receivework outlined in Algorithm 2.
placework receives the number of temporary products that
will be generated for each entry in A. A prefix sum over
that data yields the expansion of temporary products up to
a specific entry in A. size queries the overall sum, i.e., how
many elements are still to be processed. receivework can
be called with a desired number of elements to be drawn
from the work distribution (Consume). It can deliver multiple
elements (N) to each thread. We typically use 8.

To perform the work assignment, we determine in parallel
the offset of the first temporary product of each row from A
(line 17-19). Marking this product (line 20) and performing
a max prefix scan over the data (line 24) assigns the corre-
sponding row id (A.s) to all Consume temporary products.
To ensure data is loaded in a coalesced manner, we interleave
the temporary products between threads, which is commonly
known as moving from a block layout to stripped layout(line
25). Comparing the output id (c) and the cumulative sum up
to the first element of the respective row (WDState[A,.s[i]]),
the local offset in the row can be computed.

Instead of using the local offset directly, we reverse the or-
der using the offset from the next row WDState[A,es[i] + 1]
and count down (line 29). In this way, if the work distribu-
tion splits a row in B, we take entries from the end of the
row and thus simply act like the row is shorter in the next
iteration of ESC. Finally, we reduce all cumulative counts by
the number of elements drawn from the work distribution
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Algorithm 2: Local Work Distribution

1 ScratchPad WDState[NNZ_PER_BLOCK]
2 Function placework (elements[NNZ_PER_THREAD])

3 blockPrefixSumIncl(elements, elements)

4 for i < 0 to NNZ_PER_THREAD do

5 | WDState[tid - THREADS + i + 1] < elements]i]
6 WDState[0] « 0

7 syncThreads ()

s Function size()
L return WDState[NNZ_PER_BLOCK]

©

10 Function receivework (N, Consume)

1 ScratchPad Offsets| N - THREADS]

12 Ares [N]

13 Bres[N]

1 clear (Offsets)

15 syncThreads()

16 for i < 0 to NNZ_PER_THREAD do

17 a «— WDState[i - THREADS + tid]

18 an «— WDState[i - THREADS + tid + 1]
19 if a < Consume and a # a, then

20 | Offsets[a] «— i - THREADS + tid

21 syncThreads ()

22 fori < 0to N do

23 L Aresli] « Offsets|N - tid + i]
21 blockMaxScanIncl(Ayes, Ares)
25 blockedToStripped(Ayes, Ares)
26 fori < 0to N do

27 ¢ = tid + i - THREADS

28 if ¢ < Consume then

29 ‘ Bres[i] <« WDState[Ayes[i] + 1] —c—1
30 else

31 Aresli] < 0

32 L Bres[i] < 0

33 syncThreads()

34 for i < 0 to NNZ_PER_THREAD do

35 j — tid + i - THREADS + 1

36 WDState[j] < max(0, WDState[j] — Consume)

37 syncThreads()
38 return Ayes, Bres

(line 36) and return identifiers for all temporary products
(Ayes, Bres). The only state the work distribution needs to
keep is WDState. As AC-ESC might run out of memory dur-
ing chunk allocation, it needs to be able to continue after an
allocation round trip to the host. Thus, the work distribution
also needs to support restarts. In case of a restart, we simply
store the number of already consumed elements to global
memory. When the block continues, we initialize the work
distribution as usual, but immediately reduce the workload
accordingly, i.e., we execute line 36 with the stored count.
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Figure 3. Example of our work distribution-driven local ESC:
(a) After global load balancing over A’s non-zeros (colors),
we fill the work distribution with the row lengths each entry
from A references in B. (b) Taking 10 elements from the work
distribution, we expand, sort and compact. (c) A first chunk
for row id 2 is split off to global; the remaining 3 elements are
kept locally for another iteration. (d) 7 elements are drawn
from the work distribution. (e) All elements are kept for
another iteration. (f) 5 elements are needed. (g) A complete
chunk for row 3 is produced.
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3.2.3 Local ESC

Driven by the work distribution, we perform multiple itera-
tions of local ESC, as indicated in Figure 3. Using the output
from the work distribution, every thread loads its assigned
element from B and multiplies it with the previously loaded
value from A to complete the expansion. This yields coa-
lesced memory access for elements of the same row in B. Of
course, as different rows from B might be loaded—depending
on the column ids of A—the exact memory access pattern
still depends on the input data.

After the expansion, the intermediate products are moved
into radix sort, using their row and column id for sorting,.
The runtime of radix sort is proportional to the bit length
being sorted, and thus reducing sort bit length is important
for ESC [9]. While previous work followed a static approach
to bit reduction, our approach is more aggressive and com-
pletely dynamic: As mentioned earlier, we bound the maxi-
mum range of row ids using a dictionary. Unfortunately, the
same approach is not applicable to column ids as it would
require knowledge of all unique column ids. However, we
can bound the range by tracking the minimum and maxi-
mum id for all entries we fetch from B and thus reduce the
number of bits. We do the same for the row ids on top of
the dictionary, further reducing their bit range. Thus, the
sorting effort adapts to the input data present.

The reduction of the number of sorted bits not only re-
duces the sorting effort, but also the register requirements.
Keeping in mind that the row ids in the worst case require
log,(NNZ_PER_BLOCK) bits and the column id of B is lim-
ited by B’s dimension, we choose a 32 bit or 64 bit integer. For
example, for a block size of 256 threads and 2 NNZ_PER_-
THREAD, we need 9 bits; thus 32 bit integers are sufficient
for matrices up to 8.4 million columns (23 bits).

In the compaction step, we are not only interested in com-
bining the data, but also in the number of entries in every
row and how to write the chunk to memory. We perform all
three tasks within a single prefix scan using special opera-
tors and state. At first, we determine whether neighbouring
elements have the same sorting key, i.e., should be combined,
and whether their row id bits match, i.e. they are from the
same row. Every thread can trivially perform this operation
for all elements it holds in registers.

For cross-thread communication, we use scratchpad mem-
ory. We then encode both facts as individual bits in a 32 bit
integer (row ends as the 17th bit ( ) in Algorithm 3;
the end of a combine sequence using the first bit (purple)).
We split the remaining 30 bits in half to count the elements
in each row (green) and overall compacted elements (blue).
For each element that ends a combine sequence, we initialize
each of the 15 bit counters to 1.

The scan uses the state information to decide whether to
reset the accumulation and/or counting bits as outlined in
Algorithm 3.
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Algorithm 3: Compaction Scan Operator

// initial state for the scan operation
// end row 0b0000 000000000011 0000000000000011
// end comp 0b0000 0000 000000100000 0000 00000011
// none 0b0000 0000 0000 0000 0000 0000 0000 0000
1 Function CombineScanOperator(a, b)

2 if equalRow (agcy, brey) then
3 ‘ state «— astqare & OXFFFE
4 else

5 | state — astare & OXFFFEFFFE
6 if Akey = bkey then

7 Nyalue < alue + boalue
8 else

9 L Nyalue < bualue

10 Niey < brey

1 Nstate < State + bsiate

12 return n

After completion of the scan, the state bits can still be
queried to identify the compacted elements as well as row
ends. Additionally, the other bits hold information about
each element’s position in the chunk as well as the local
offset in the row. Using the row counts, we update the global
counter for each row, which will serve later on for computing
the row pointer array and memory requirements of C.

Previous approaches to local ESC assign the exact number
of temporary elements that can be handled to a block [7] and
go to global memory after ESC. The resulting data however
may still need to be combined with temporary results from
multiple other blocks. If we directly wrote our results to
chunks in global memory, we would face the same issue.
Thanks to the flexibility of our work distribution, we keep
the results around for another iteration of ESC, combining
the temporary results with new data from B.

By keeping the temporary results for the next iteration of
ESC and reducing the number of elements drawn from the
work distribution accordingly, we reduce the global mem-
ory traffic significantly. While avoiding additional chunks is
reasonable, keeping elements from multiple output rows for
the next iteration is not, as all but the last row are already
completed. Conversely, it does not make sense to have a
few elements of a new row at the end of a chunk, as these
will require merging in a later stage. Thus, we only keep the
last row for the next round and write other rows to a global
chunk.

3.2.4 Chunk Management

When we decide to write a chunk of C to global memory, a
thread of the block uses the compaction result to compute
the chunk size and allocates a chunk from the pool. To this
end, it increments an atomic counter by the chunk size. To
write both the column ids and values to the chunk, we take a
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Figure 4. The chunk lists are constructed as per row linked
lists while the shared rows tracker holds per row chunk
counts if merging is required for a certain row.

compacting round trip through scratchpad memory to ensure
coalesced writes to global memory.

When a chunk is generated, we update the restart infor-
mation for this thread block. If a complete chunk is written,
information about how many elements have been drained
from the work distribution is sufficient. If the last row is
kept for the next iteration, we write the row id as restart
information. The next time the block is launched it can then
completely ignore these rows when loading data from A.

In addition to the data needed for C, each chunk holds
its starting row, element count and number of elements in
the first and last row. To perform chunk copy in parallel in
the final stage, we keep an array of pointers to all chunks.
Using a full pointer allows chunks to be placed in memory
arbitrarily. Thus, expanding the chunk pool is as easy as
adding another memory region to be used as pool.

Finally, we require information about which chunks have
data for the same row to start merging. To identify all chunks
that contribute to one output row, we construct a linked list
of chunk pointers for every row, with a list head being avail-
able for every row, as shown in Figure 4. The list insertion
uses an atomic exchange operation on the list heads, mak-
ing the list order dependent on the hardware scheduler. To
ensure bit-stable results, we further store a chunk identifier
from the block id and a per-block running chunk number,
which yields a global ordering of chunks. To increase the
efficiency of chunk merging, we use one bit of the list heads
to indicate whether there is only a single chunk in the list.
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Upon adding a second chunk to the list, we insert the row id
into an array holding all rows with two or more chunks. This
array serves as the basis for identifying how many merge
blocks need to be started in the next stage.

3.3 Chunk Merging

After AC-ESC, the merge stage combines rows shared be-
tween chunks to generate the final result. To guarantee a
deterministic merge order, we perform an initial sort of the
chunks based on their global chunk order. This sort is negligi-
ble compared to the merge itself. As any number of elements
may need to be merged, one could launch a single block for
each shared row. However, typically, a shared row is covered
by two chunks, i.e., because global load balancing splits the
entries of one row across two blocks. In this case, the number
of entries in both chunks may be low, potentially wasting
resources when using a complete block.

Similarly to AC-ESC, we want to work on multiple rows
to fully use the available resources. To this end, we run a
prefix scan over all shared rows, using the row count that
we summed up atomically for all rows during AC-ESC. For
shared rows, this count represents the number of remaining
intermediate products.

Throughout the scan we combine row range identifiers,
if the sum of their respective elements does not overflow
the number of elements we can handle in one block. This
approach may not fill up blocks completely, but yields sig-
nificantly better resource usage than a one-block-per-row
strategy. When launching these Multi Merge blocks, we once
again build on our work distribution and execute the remain-
ing steps of our AC-ESC, creating new chunks for all merged
rows. At the same time, we set the row count for each shared
row to the correct value after merging.

The scope of Multi Merge is limited to rows that were
split over two chunks. We therefore propose two additional
algorithms to deal with rows yielding more than two chunks:
Path Merge and Search Merge. The former is applicable up to a
predefined number of chunks, while the latter can handle an
arbitrary number. We decide which algorithm to use based
on the length of each row’s chunk list.

Search Merge uses binary search sampling in all chunk
column ids to find overlapping ranges that can be handled
at once. At first, we compute the minimum and maximum
column id over all involved chunks. Then, we uniformly
sample this range, according to ((max — min)/ THREADS),
assigning one thread to each sample. Using binary search,
every thread finds the next higher column id in all chunks
and computes the sum over all elements that are below across
all chunks. The thread with the largest sum that still fits
into the available resources, delivers the data to be merged.
Using AC-ESC on that data yields the first part of the merged
row. Reducing the count of all samples by the number of
consumed elements yields the next cut and so on. In case the
sampling is too coarse we sub-sample the range.
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Figure 5. Trend line of the Sp GEMM performance for all tested methods over highly sparse matrices (average row length
< 42) from the SuiteSparse collection. Line thickness indicates variance.

Path Merge avoids global memory binary search by placing
samples uniformly over the entries of every chunk. For each
sample we fetch the column id and sort them across the
entire block, while carrying the sample number along with
the sort. Next, we perform a custom scan over the sorted data
to find the correspondences between samples from different
chunks, i.e., identify possible paths through all chunks.

As every sample originally only holds the sample number
from its own chunk, we set the other counts to zero, using
only as many bits as necessary to represent each sample num-
ber. The max scan over these individual bit ranges delivers
the combined merge path, i.e., the matching cut through each
chunk. For each path, we compute the number of temporary
elements from the combined sample locations and chunk
sizes. Choose the one that fits into memory, we run AC-ESC.
The stored paths are again used for the next iteration.

All three approaches produce new chunks, and thus must
support restarts. In Multi Merge, a restart simply starts from
scratch, as it has only one iteration. On the other hand, both
Search Merge and Path Merge store the last used sample and
therefore a restart therein equals sampling a reduced range.

3.4 Long Rows

Processing long rows that exceed the available local resources
during AC-ESC would load and sort them without any change
and write them to the chunk pool. To avoid these unneces-
sary computations, we identify long rows during Fetch A
and immediately create a chunk that only points to the data
in B and attach the factor from A.

By removing the row from the work distribution, we avoid
processing it during AC-ESC, but have to make slight mod-
ifications to this stage. If the long row has to be merged
with values otherwise placed in the middle of a chunk, we
break up chunks at the position of the long row to allow for
merging afterwards in the merge stage.

3.5 Output Matrix and Chunk Copy

Once all chunks have been finalized, generating the final
result is straightforward: A device-wide prefix sum over the
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row counts yields the row pointer array and C’s memory
requirement for allocation of the values and column id arrays.
Then, in parallel, we iterate over all chunks and copy their
data to the newly allocated C. Each chunk uses a complete
block of threads to copy data in a coalesced fashion.

4 Evaluation

To provide a realistic assessment of the performance of our
approach, we benchmarked the entire SuiteSparse matrix
collection [11], which contains more than 1800 unique matri-
ces of non-trivial size (> 10* NNZ) from various application
domains with different matrix characteristics. Very small
matrices (< 10* NNZ) are excluded as they do not provide
sufficient parallelism for execution on the GPU and thus CPU
implementations are typically faster. From about 10* NNZ
upwards, our approach outperforms state-of-the-art CPU
implementations [14] on a consumer grade CPU of similar
cost (Intel Xeon E5-2630 16 GB of memory). We compare
our approach to cuSparse [23], bhSparse [20], RMerge [17],
nsparse [22], and Kokkos [14]. All approaches work directly
with CSR and were compiled with CUDA Toolkit 10.0. We
compute A - A for square matrices and A - AT for non-square,
where we precompute A”. As test platform we use an Intel
i7 7700 CPU at 3.60GHz and an NVIDIA Titan Xp (compute
capability 6.1).

Our algorithm is written in CUDA and uses a block size of
256/512 non-zeros for global load balancing, sorts 8 elements
per thread and keeps up to 4 elements per thread from one
iteration to the next. We use conservative memory estimates
for all helper data structures. For the initial chunk pool,
we rely on a simplistic memory estimate S of C, using the
average row length as a measure of row overlaps, i.e., pretend
matrices have the same number of uniformly distributed
elements in each row. More precisely, for A of size ny X
my, the average row length is given by a = |A|/n4, where
|A| indicates the number of non-zeros, and the estimated
probability for a collision is p, = @/ma. For the product AB,
the memory estimate is given as S ~ na-b-(1—(1-pp)%)/pp.
We multiply this factor by 1.2 to account for the chunk meta
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~1500 highly sparse matrices (@ < 42)

~300 denser matrices (42 < a)
speed up of AC-SpGEMM  better than

speed up of AC-SpGEMM  better than best best

min max h.mean AC-SpGEMM min max h.mean AC-SpGEMM
cuSparseT 0.78 614.17 4.01 0% 0% 0.55 674.51 1.66 6% 2%
- bhSparse 1.00 96.60 5.56 0% 0% 0.71 429.04 1.77 9% 0%
é RMerge 0.60 23.50 3.73 0% 0% 0.34 10.21 2.00 3% 0%
nsparseT 0.26 76.80 2.29 3% 3% 0.19 33.02 0.76 66% 60%
Kokkos' 0.48 767.71 6.27 1% 1% 0.34 148.27 1.17 45% 7%
AC-SpGEMM - - - - 96% - - - - 31%
cuSparseT 0.51 470.44 3.78 0% 0% 0.62 608.74 1.50 10% 3%
K5 bhSparse 1.00 88.60 5.12 0% 0% 0.71 387.04 1.56 17% 0%
3 RMerge 0.45 24.90 3.70 0% 0% 0.40 9.50 1.81 5% 1%
3 nsparseT 0.31 43.06 2.01 6% 5% 0.18  28.83 0.67 70% 61%
Kokkos™ 0.37 582.87 5.09 2% 1% 0.30 120.58 0.92 53% 10%
AC-SpGEMM - - - - 94% - - - - 26%

Table 1. Relative speedup of AC-SpGEMM over competing approaches and percentage where the approaches achieved better
performance than AC-SpGEMM / achieved the best performance. AC-SpGEMM dominates the performance for highly sparse
matrices and still achieves the best performance for about 1/3 of denser matrices. " does not produce bit-stable results.

data and divergences from the average row length and apply
alower bound of 100MB. In case the estimate is not sufficient,
the restart functionality will increase the chunk pool.

4.1 Runtime Overview

To better analyze the runtime performance, we split the eval-
uation into highly sparse and denser matrices, with a split fac-
tor of 42 non-zeroes per row, classifying 80% of the matrices
in SuiteSparse as highly sparse (see also Figure 1). Summary
plots for SPGEMM on highly sparse matrices are shown in
Figure 5, and relative speedups against the evaluated meth-
ods for all matrices in Table 1. For highly sparse matrices, our
approach clearly dominates performance, achieving average
speedups of at least 2x over other approaches. For denser
matrices, nsparse achieves the best performance, with an
average speedup of 1.32/1.49 over AC-SpGEMM, with AC-
SpGEMM being on par with Kokkos.

Over the entire data set, our approach achieves an aver-
age speedup of 3.27/3.05, 4.17/3.80, 3.30/3.21, 1.74/1.53, and
3.76/3.02, over cuSparse, bhSparse, RMerge, nsparse, and
Kokkos, respectively. The trend plots and table already indi-
cate the strengths and weaknesses of our approach. While
ESC leads to deterministic, bit-stable results, the search and
merge overhead increases as the number of non-zeros per
row increase. Thus, even though our approach performs mul-
tiple iterations of ESC in efficient on-chip memory, our ap-
proach loses ground to hash-based approaches, like nsparse,
for denser matrices. However, for very sparse matrices the
overhead of ESC is not severe and the advantages of local
scheduling and single-run chunk generation shine. Com-
pared to other bit-stable approaches, AC-SpGEMM overall
clearly achieves the best performance.

76

I AC-SpGEMM [E@ bhSparse
[ cuSparse [ nsparse
Il RMerge 3 Kokkos

20

GFLOPS

o
~
1

<

'S
o QU
S O
<L

Figure 6. Double precision performance for commonly
benchmarked matrices and additional cases for which our
approach is bested by others. Note that nsparse achieves 45
GFLOPS for the last matrix.

4.2 Runtime Details

A performance overview for commonly benchmarked matri-
ces from various fields and selected matrices that are difficult
for our approach are provided in Figure 6; matrix statistics
are given in Table 2. The most difficult scenarios for our
approach include TSC_OPF_1047, cant, and hood, which, in
spite of having strongly different structure, all feature a large
average row length, produce a high number of intermediate
products and compact them significantly (up to a compaction
factor of 150). The cost of ESC is simply too high in compar-
ison to hashing, even while keeping hundreds of iterations
in local memory. For TSC_OPF_1047, nsparse achieves the
highest speedup over AC-SpGEMM: 5X. Another matrix with
many temporary products but a lower compaction factor is
landmark. Interestingly, due to its very special structure it
is one of the few cases where RMerge takes the lead.
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A C
rows cols nnz len max nnz len max temp
language 0.40 0.40 1.22 3.011.5k 4.61 11.632.0k 5.5
scircuit 0.17 0.17 096 5.6 353 5.22 30.5 1.9k 8.7
stat96v2 0.03 0.96 2.85 98.1 3.2k 0.35 12.1 1.6k 8.7
poiss... 0.01 0.01 0.35 26.1 110 2.96218.8 584 11.8
144 0.14 0.14 2.15 149 26 1042 72.0 116 33.0
asia_osm 11.9511.9525.42 2.1 9 4275 3.6 24 569
webb... 1.00 1.00 3.11 3.1 4.7k 51.11 51.1124k 69.5
atmos... 149 1491032 6.9 7 3649 245 25 71.6
filter3D 0.11 0.11 2.71 254 112 20.16189.4 550 86.0
bibd_19_9 0.01 0.09 3.319.4k 194 0.03171.0 171 119.7
TSOPF... 0.04 0.0416.17 424.2 983 74.32 1.9k 3.3k 128.0
hugebu... 21.20 21.20 63.58 3.0 313269 6.3 7 190.7
cant 0.06 0.06 4.01 64.2 78 17.44279.3 375 269.5
landmark 0.07 0.00 1.15 16.0 16 101.82 1.4k 1.6k 549.2
hood 0.22 0.2210.77 48.8 77 34.241553 231 562.0
TSC_O... 0.01 0.01 2.02247.8 1.5k 8.83 1.1k 3.5k 13524

Table 2. Matrix overview: values in millions except for row
statistics (average length and maximum row length).
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Figure 7. Relative runtime of the different steps of our ap-
proach: global load balancing (GLB), AC-ESC, Merge Assign-
ment (MCC), Multi Merge (MM), Path Merge (PM), Search
Merge (SM), and Chunk Copy (CC).

As the compaction factor gets lower, our approach is
competitive, leading the performance for many commonly
tested matrices, in various domains, such as fluid dynamics
(poisson3Da), linear programming (stat96v2), or graphs
(webbase-1M). This performance edge is independent of the
size of the matrix (compare hugebubbles-00020 and 144).
Also, local dense areas (TSOPF _RS_b2383), specific structures
(hugebubbles-00020), individual long rows (webbase-1M),
non-square matrices (stat96v2), and very long rows (bibd_-
19_9) are handled efficiently by our approach. The best
speedup is achieved by our approach if the matrix is highly
sparse, but has few long rows (language), where our effi-
cient ESC and the special treatment of long rows go hand in
hand, outperforming the best other approach by 20x.

The timing breakdown of our approach in Figure 7 shows
that we operate under ideal conditions for many matrices,
spending most time in AC-ESC within on-chip memory.
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helper chunk used % u/o R mpL

language 15.05 100.00 58.23 50.88% 1.10 0 98.73%
scircuit  13.09 100.00 63.15 55.18% 1.06 0 97.68%
stat96v2 2991 122.11 6.68 5.47% 1.65 0 97.98%
poisson3Da 6.06 12996 42.61 32.78% 1.26 0 91.02%
144  27.04 460.75 129.89 28.19% 1.09 0 98.38%
asia_osm 416.96 1091.05 497.10 45.56% 1.02 0 99.77%
webbase-1M  100.03 710.80 605.79 85.23% 1.04 3 98.05%
atmosmodl 130.69 1033.36 435.36 42.13% 1.04 0 99.70%
filter3D  38.06 983.23 271.19 27.58% 1.18 0 98.78%
bibd_19_9 1.06 100.00 19.20 16.78% 57.38 0 99.21%
TSOPF_... 605.60 3044.69 1593.56 52.34% 1.87 0 99.23%
hugebub... 928.54 1991.35 1545.96 77.63% 1.02 0 99.45%
cant  66.76 3072.00 276.51 9.00% 1.39 0 99.48%
landmark 228.97 6144.00 3333.51 54.26% 2.86 1 97.29%
hood 162.85 3072.00 508.58 16.56% 1.30 0 99.73%
TSC_O... 37.99 3072.00 310.41 10.10% 3.07 0 99.03%

Table 3. Overall memory consumption in MB for helper data
structures, chunk pool, actual chunk pool used, and used
chunk memory relative to the output matrix (u/o); as well as
number of restarts (R) and lowest multiprocessor load (mpL).

le9

. Il AC-Helper I RMerge
I AC-Chunks [ bhSparse
m 4] 3 AC-Overalloc I nsparse
[G]

R N B B I A A R CRC ,
® 3 e §F ¢ § L2 XK SE 58 g
S Y 9 9~ o & § 9 & 3 8 £ 5 O
5 5 2 4 L9 8 & v oa o9 Y g <
§9 58 ®3Ff585 §°8
o n Q ES < 2 32 o ~

Figure 8. Memory consumptions. Due to our simplistic mem-
ory estimate, the effectively used memory is very small com-
pared to the allocation.

For matrices with long rows (TSOPF_RS_b2383), a consid-
erable amount of time is spent on Merge. Although Multi
Merge handles more shared rows than Search and Path Merge
in all cases, its time is negligible, as every block handles
many rows. Assigning the merge cases and copying the fi-
nal matrix make up between 1-20% of the runtime; global
load balancing is negligible, underlining the efficiency of our
approach.

At the same time, multi processor load is virtually perfect
in all cases (cf- last column of Table 3), indicating that pairing
our global and local load balancing with the GPU hardware
scheduler achieves ideal workload distributions.

4.3 Memory Consumption

Our memory consumption is detailed in Table 3 and com-
pared to others in Figure 8. nsparse requires hardly any
additional memory.
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We allocate similar memory as RMerge and bhSparse, of
which we typically only use a fraction (% in Table 3). The
fact that the used chunk memory is only slightly higher than
the memory required for C (u/o) in Table 3, shows that lo-
cal iterations of ESC essentially produce completed chunks
of the output matrix (note that our lower bound of 100MB
leads to the high value for bibd_19_9). This highlights the
advantages of our local work distribution. Our chunk pool
estimate is conservative in most cases and only few matrices
require restarts, cf. Table 3.

Although we require three restarts for webbase-1M, we
achieve a 4.4x speedup over the best other approach, indi-
cating that restart is efficient. To evaluate the cost of restarts,
we reduced the chunk pool size for webbase-1M, where we
measured a runtime of 22.0, 23.6, 24.5, 26.6, 30.8, and 39.7,
and 48.6ms for 0, 3, 5, 10, 21, 42, and 63 restarts, respectively.
Even with 63 restarts we still beat nsparse by a factor of 2x.
Additionally, a less conservative chunk estimate could sig-
nificantly reduce memory with little impact on performance
due to restarts.

4.4 Summary

Overall, it can be noted that AC-SpGEMM is the fastest
approach when bit-stable results are required for virtually
all tested matrices (RMerge is better in 1% of cases). AC-
SpGEMM is the fastest approach for very sparse matrices.
For matrices with many temporary products and large com-
paction factors, ESC strategies tend to fall behind hash-based
approaches like nsparse as the per-product cost is simply too
high. Nevertheless, across the entire test suit, AC-SpGEMM
takes the performance lead in 83% of all cases.
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5 Conclusion

On massively parallel processors such as GPUs, any per-
formance gains require bringing fine grained parallelism
forward. AC-SpGEMM achieves this goal by a comprehen-
sive take on the problem. Our main contribution is a fully
adaptive local work distribution, allowing for multiple iter-
ations of local ESC avoiding costly global memory round
trips. Paired with a novel, adaptive chunk management ap-
proach, special case handling of long rows, and a series of
optimizations, AC-SpGEMM forms a highly efficient com-
plete SpGEMM solution, which achieves bit-stable results.
Experimental results on 2000 matrices across various fields
reveal dominating performance for highly sparse matrices.
Only matrices with very large numbers of temporary prod-
ucts can be handled more efficiently using the most recent
hash-based alternative—which is not bit-stable.

An obvious improvement for our approach is reducing the
overallocation of chunk memory. Furthermore, extending the
adaptive behaviour of our chunk-based approach to choose
between alternative approaches (ESC, hashing, merging) de-

pending on the load currently seen by the work distribution
may lead to a further improvement of performance in those

scenarios where other strategies shine.
Our approach is open source and can be downloaded from
ACM DL.
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Adaptive GPU SpGEMM

A Artifact Description Appendix: Adaptive
Sparse Matrix-Matrix Multiplication on
the GPU

A.1 Abstract

The following appendix provides the necessary information
to acquire the framework and rerun the experiments used to
evaluate the framework.

A.2 Description
A.2.1 Check-list (artifact meta information)

e Data set: Matrix data set found on SuiteSparse Matrix Col-
lection (Formerly the University of Florida Sparse Matrix
Collection)

Hardware: Recent GPU hardware from NVIDIA, tested on
NVIDIA GTX 1080TI, NVIDIA GTX TITAN X Pascal and
NVIDIA GTX TITAN Xp

Output: The output is provided in the output stream as well
asina .csv file

Experiment workflow: Run runall.bat/.sh file to gather
results for all matrices in a folder or run individual matrices
through the framework

Experiment customization: The number of iterations used
for the timing measurements can be altered. A CPU imple-
mentation can be enabled as well to confirm the results of
the framework output

e Publicly available?: ACM DL

A.2.2 How software can be obtained (if available)
The framework is downloadable from ACM DL.

A.2.3 Hardware dependencies

Recent GPU hardware from NVIDIA, tested on NVIDIA GTX
1080Ti, NVIDIA GTX TITAN X Pascal and NVIDIA GTX
TITAN Xp. Remaining system specifications should have a
comparatively small impact on performance, performance
was tested on an Intel Core i7-7700 paired with 32 GB RAM
on Ubuntu 16.04 LTS.

A.2.4 Software dependencies

e CMake 3.2 or higher

e CUDA9.1/9.2/10.0

e C++14 compliant compiler, tested on:
— MSVC (Visual Studio 2017)
- GCCo6/GCC7

e CUB v1.8.0

A.2.5 Datasets

The framework itself can parse Matrix Market Format (.mtx)
files (Matrix data set found on SuiteSparse Matrix Collection
(Formerly the University of Florida Sparse Matrix Collec-
tion)) and upon first parsing a matrix in this format also
performs a conversion into a binary format that will be used
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for consecutive runs, which greatly reduces loading times.
These are stored with the .hicoo extension.

A.3 Installation

On Linux simply run the provided setup.sh script which
will clone CUB, setup and build the project. On Windows,
download and extract CUB into the folder include/external,
then create a build folder in the top directory and use CMake
to setup the project to build.

A.4 Experiment workflow
The framework can be operated in one of two modes:

e Single Matrix
— In this setup the framework can be run for a single
matrix and optionally confirm the resulting output
matrix by comparing it to a host-based solution
e Complete testrun
— A runall.bat/.sh file is provided that consecutively
calls the framework with all matrices provided in a
folder, this was used to run the large testcases

The output is provided in the output stream as well as in a
separate .csv file which includes all important matrix stats
(rows, columns, nnz, average nnz per row, etc.) as well as
timing measurements. This script is setup such that each test
run is done as a separate process, such that failed launches
do not impede launches after that. The output of the script
are timing measurements and when enabling Debug within
the framework (the template instantiation must have this
enabled) also detailed measurements as well as memory mea-
surements.

For all matrices in the testset the framework computes
C=A-A(or C = A- AT if the input matrix is not square) and
measures the time required for the multiplication procedure,
only the input matrix A is provided directly on the device to
the procedure and the result matrix C is also returned as a
device matrix. Conversion operators are provided to transfer
matrices between host and device as well as convert the COO
format to CSR if required.

A.5 Evaluation and expected result

To replicate the results gathered in this paper it suffices to
run the runall.bat/.sh file on a folder containing matrices
found in the SuiteSparse Matrix Collection (Formerly the
University of Florida Sparse Matrix Collection) dataset. The
next page holds two plots detailing the exact performance
measurements for the complete test set compiled using the
hardware described above.

A.6 Experiment customization

The number of iterations used for the timing measurements
can be altered. A CPU implementation can be enabled as
well to confirm the results of the framework output. Debug
can be enabled to get more detailed timing/memory results.
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Figure 9. Marker plot for the complete test set using double precision for small matrices with average row length a < 42

Figure 10. Marker plot for the complete test set using double precision for large matrices with average row length a > 42

Figure 11. Marker plot for the complete test set using single precision for small matrices with average row length a < 42

Figure 12. Marker plot for the complete test set using single precision for large matrices with average row length a > 42
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