
Sparse Matrix Assembly on the GPU Through
Multiplication Patterns

Rhaleb Zayer∗, Markus Steinberger† and Hans-Peter Seidel∗
∗Max Planck Institute for Informatics

Saarbrücken, Germany
Email: {rzayer,hpseidel}@mpi-inf.mpg.de

†Graz University of Technology
Graz, Austria

Email: markus.steinberger@icg.tugraz.at

Abstract—The numerical treatment of variational problems
gives rise to large sparse matrices, which are typically assembled
by coalescing elementary contributions. As the explicit matrix
form is required by numerical solvers, the assembly step can be
a potential bottleneck, especially in implicit and time dependent
settings where considerable updates are needed. On standard
HPC platforms, this process can be vectorized by taking advan-
tage of additional mesh querying data structures. However, on
graphics hardware, vectorization is inhibited by limited memory
resources. In this paper, we propose a lean unstructured mesh
representation, which allows casting the assembly problem as
a sparse matrix-matrix multiplication. We demonstrate how
the global graph connectivity of the assembled matrix can be
captured through basic linear algebra operations and show how
local interactions between nodes/degrees of freedom within an
element can be encoded by means of concise representation,
action maps. These ideas not only reduce the memory storage
requirements but also cut down on the bulk of data that needs
to be moved from global storage to the compute units, which
is crucial on parallel computing hardware, and in particular on
the GPU. Furthermore, we analyze the effect of mesh memory
layout on the assembly performance.

I. INTRODUCTION

The computational effort within most variational problem
formulations in general and finite elements in particular,
revolves around two major steps: i) the system matrix setup,
known as the assembly process, and ii) numerical solution
of the resulting algebraic equations. The second step has
received considerable attention even before the inception of
modern computing [1] and continues to capture the focus
of the numerical community. Interest in the assembly step
is more recent and has grown out of challenges in high
performance computing (HPC). Numerical evidence across
various disciplines suggests that the assembly problem weighs
heavily on performance and impedes scalability, see e.g., the
numerical experimental in [2], [3], [4].

Our work targets the assembly step on modern graphics
hardware and is motivated by several observations. Memory
requirements: existing matrix assembly methods on classical
HPC platforms make use of additional adjacency information,
e.g [5], or gather scatter operations on worksets, e.g. [6]. The
aggregate cost of building, moving, and updating adjacency

data poses great challenges on infrastructures with limited
memory resources such as graphics hardware and restricts the
scope and scale of applications. On the other hand, efficient
implementations of standard gather scatter like operation
on the GPU, to the best of our knowledge, still rely on
preprocessed CPU data. Availability of direct solvers on
the GPU: while parallel direct solvers have been available
for quite some time e.g. [7], their portability to graphics
hardware has been challenged by weak parallelism, sparsity
pattern fill-in, and random memory access patterns. Recent
work, e.g. [8], [9], demonstrates the potential of such solvers
on the GPU. Performance through linear algebra: There is a
recent regain of interest into sparse matrix algebra methods for
large graph representations, e.g. [10]. Substantial performance
and scalability gains can be achieved by simply optimizing the
underlying linear algebra kernels.

In order to accommodate the observations above, our solution
departs from classical assembly strategies. We build upon
the observation that the inner node-node relations inherent
to the assembly processes can be captured through a matrix-
matrix multiplication. Our solution does not require expensive
intermediate edge-based representations for tracking mesh
topology but rather a simple re-casting of the element table
as an equivalent sparse matrix, the mesh matrix, an ordered
element-node connectivity matrix. In order to encode various
possible integrations between element nodes, we introduce
action maps which act as the hands and arms of the mesh
matrix and we show their use for assembly and for performing
basic numerical evaluations on meshes in a concise and memory
efficient manner. The mesh matrix representation highlights
memory access patterns and thus can be tuned for better locality.
The reduction of its bandwidth yields substantial performance
gains to the assembly process.

As linear algebra primitives such as matrix-matrix mul-
tiplication are the back-bone of most numerical code, our
approach can be easily incorporated within existing sparse
matrix libraries without requiring substantial code modifications.
Furthermore, given the tremendous effort to speed up those
primitives, any performance gains would naturally profit our
assembly approach. To the best of our knowledge, our approach



is the first to perform the whole assembly on the GPU without
requiring any additional CPU preprocessing or postprocessing.

The rest of this paper is organized as follows, we will
cover the related work in section II. The mesh matrix is
introduced in section III and its use with action maps for
matrix assembly is described in section IV. Techniques for
reducing the storage requirement pertaining to mesh matrix are
outlined in section V. The technical aspects related to our serial
and GPU implementations are discussed in section VI. Aspects
related to the optimization of the mesh matrix memory layout
are outlined in section VII. Experimental results of our approach
and performance comparisons are given in section VIII.

II. RELATED WORK

Iterative solvers can bypass full matrix assembly by per-
forming localized matrix vector products. Nonetheless, the
combination of shared memory and the unstructured nature
of general meshes gives rise to race conditions as multiple
processors attempt to address the same memory location.
Early treatments of the problem in [11], [12], [13], avoid
race conditions by means of coloring schemes. The idea is to
process the mesh elements in sequences (colors) where no two
elements are adjacent to each other. In this way, concurrent
programming is achieved for blocks of distinct colors and then
synchronized globally. The efficiency of the synchronization
process depends on the mesh structure. The impact of coloring
on memory locality has been recently studied [14], in particular
the interplay of the number of colors, vertex blocking and paral-
lelism. In the context of direct solvers, load balancing strategies
based on mesh partitioning are commonly used to reduce the
computational burden [12]. Parallelism is achieved by forming
sub-domain matrices. State-of-the-art partitioning methods such
as MeTis [15] are commonly used. Note however, that when
partitioning is used, assembly at the sub-mesh level still needs
to be performed efficiently. Scalability can be addressed by
divide and conquer strategies [5] or speculative coloring [16].
The portability of coloring and partitioning on the graphics
process unit (GPU) has been studied by several authors [17],
[18], [19]. Existing GPU implementations, e.g. [20], rely on
mesh querying data structures to store the topology (vertex,
face and edge connectivity information). Furthermore, crucial
operations such as sparsity pattern computation are performed
on the host. While the use of extensive data structures is
commonly adopted and well justified on high performance
computing clusters e.g., [5], their use on the GPU restricts the
range of applications to moderately sized data-sets.

General purpose methods such as the well established serial
Sparse function in Matlab [21], directly assemble coordinate
triplets into a sparse matrix (please note that despite the age
of the reference, the code is up to date). A variant known
as Sparse2, which capitalizes on a different sorting scheme
has been proposed in the SuiteSparse package [22]. Another
breed of methods builds upon the remark that the cost of the
aforementioned general methods stems from the nature of the
compressed formats used during assembly. Instead, alternative
formats can be used to build an initial matrix, which is then

converted to the standard and computationally efficient formats.
A stack based representation has been proposed in [23], hash
tables have been used in [24], and index-based sorting was
proposed in [25]. To the best of our knowledge, there is no
GPU variant of the latter approaches.

III. THE MESH MATRIX

A mesh M is represented as a collection of ne elements,
E = {e1, . . . , ene}, where each element refers to the indices
of its respective nodes. In general, meshes are oriented and the
orientation is reflected in the order of traversal of the element
(up to a cyclic permutation). We denote the table storing node
coordinates by the array P of size np × d, where d = 2; 3,
depending on the dimensional setting of the problem. The
elements can be of arbitrary nature (polygonal/polyhedral).
However, to ease the understanding, we assume for now that
they are all of the same kind.

The element table fully encodes the mesh representation,
however it does not reveal its underlying topological structure.
We propose to overlay this representation on a sparse matrix
E, of size np × ne, while preserving the prescribed element’s
orientation as follows:

E(ei(k), i) = k; (1)

where i spans the elements and k spans the nodes of each
element ei.

Consider the following simple case of the triangulation
depicted below: The matrix E simply amounts to spreading the


e1 e2 e3 e4 e5 e6

1 1 1 4 6 7 1
2 2 3 6 4 1 7
3 3 4 1 5 6 8

 = E



e1 e2 e3 e4 e5 e6

n1 1 1 3 2 1
n2 2
n3 3 2
n4 3 1 2
n5 3
n6 2 1 3
n7 1 2
n8 3


= E

columns of E to span the range of the nodes. Please note, the
construction of such a matrix in compressed column format
(CSC), or its transpose in compressed row format (CSR) is
straightforward and computationally inexpensive. We will now
re-examine the assembly in the light of this representation.

The assembly process consists of a local assem-
bly at the individual elements level and a global as-
sembly at the mesh level, as illustrated in the inset.
The local assembly produces the
contribution of individual ele-
ments to the global matrix, and
it can be in principle carried out
in parallel. The specifics of these
local contributions depend on the
design of the elements, and the
reader is referred to standard
desk references, e.g. [26], [27].



The global assembly consists of putting the individual
contributions together to set up the system matrix. It can
be observed that the sparsity structure of the global matrix
depends on the connectivity of the underlying mesh. This
connectivity can be captured in a different way. Let us examine
the generalized vertex-vertex adjacency matrix Sv = EE>;
where E is the binary form of E.

Sv =



n1 n2 n3 n4 n5 n6 n7 n8
n1 5 1 2 2 2 2 1
n2 1 1 1
n3 2 1 2 1
n4 2 1 3 1 2
n5 1 1 1
n6 2 2 1 3 1
n7 2 1 2 1
n8 1 1 1


The nonzero entries of Sv represent the number of elements

common to any given two nodes. The diagonal entries count
the number of faces common to a given node. To a certain
extent, the multiplication captures the essence of the assembly
process and we can simply use the product EE> to fill the
global matrix. The collisions between nonzero values of E
and E> provide the location of the contribution in the local
element matrix that needs to be inserted into the global matrix.

IV. SPARSE MATRIX ASSEMBLY

On parallel computing hardware, in particular on the GPU,
memory access is considered the most costly operation. In the
following we develop some ideas, which not only reduce the
memory storage requirements but also cut down on the bulk
of data that needs to be moved from global storage to the
compute units. With the example from section III in mind, the
sparsity pattern of the matrix product results from the collisions
of nonzero entries of E and its transpose. The outcome of
these collisions can be encoded by a linear mapping, which we
call an action map. Since we would like to capture the initial
counterclockwise orientation of the mesh, we can use a cyclic
permutation matrix Q3 defined as

Q3 =
1

2

 0 1 0
0 0 1
1 0 0

 ; (2)

Please note, that since Q3 and its powers form a basis
for all 3 × 3 circulant matrices, we can encode a variety of
interactions within a face by means of action maps. For instance,
the diagonal degree matrix D can be obtained from Q0

3 = I3×3.
The graph Laplacian through Q0

3− (Q2
3 +Q3). If the mesh has

boundary, the boundary adjacency can be captured by Q3 −
Q2

3, traversal of positive entries will yield a counterclockwise
oriented boundary, negative ones yield clockwise traversal.

To see the impact of action maps on the assembly in finite
elements, let us consider the case of the constant strain triangle
(CST). The corresponding element contribution will be a 3× 3
matrix per triangle, given by

kt =

 cot θ2 + cot θ3 − cot θ3 − cot θ2
− cot θ3 cot θ3 + cot θ1 − cot θ1
− cot θ2 − cot θ1 cot θ1 + cot θ2

.
We can see that the pattern of this matrix already resembles

that of Q0
3 − (Q2

3 + Q3). Instead of storing the whole 3 × 3
matrix, we can simply associate a vector holding the cotangent
of element angles and use the action map to distribute them
during global assembly. In this case only 3 entries need to be
stored and loaded instead of 9.

We can take the concept of action maps even further,
and look at the case of a polygonal mesh consisting of
counterclockwise oriented elements (n-gones) of the same kind.
For an element, we associate the action map Qn defined by
the cyclic permutation

Qn =



0 1 0 . . . 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 1
1 0 . . . 0 0

 (3)

Let’s consider the case of a quadrilateral mesh. If we wish
to capture only relations between diagonally opposed vertices
within an element, we can simply use the action map Q2

4. This
would flag ones for diagonally opposed vertices.

For tetrahedral elements, the linear tetrahedron is given by:

kt =
1

6


∑

1 −l34 cot θ34 −l24 cot θ24 −l23 cot θ23∑
2 −l14 cot θ14 −l13 cot θ13

sym.
∑

3 −l12 cot θ12∑
4

 ;

where
∑

i infers the sum of non-diagonal entries in row i.
We can regard the tetrahedron as a combination of doubly

oriented edges or oriented faces and we can associate the
following map Qtet = Q4

4 − (Q3
4 + Q2

4 + Q4). The use of
action maps in this case requires storing only 6 entries per
tetrahedron contribution instead of 16.

The action maps serve two purposes. First, they streamline
the code by avoiding conditional statements, which is ben-
eficial for concurrent programming as branching is avoided.
Second, they reduce memory requirements, which is of utmost
importance on platforms with limited memory resources such
as graphics hardware.

V. STORAGE REQUIREMENTS REDUCTION

In practice, Compressed Sparse Row (CSR), and Compressed
Sparse Column (CSC) are widely used for performing linear
algebra operations. To illustrate the concept behind our storage
reduction, we start from the CSC format, which proceeds by
storing the matrix values and row indices and uses a column
pointer for the locations of column starts. The storage of the
mesh matrix of example III is given below.
vals = [ 1 2 3 1 2 3 3 1 2 2 3 1 2 3 1 1 2 3]
rowind = [ 1 2 3 3 4 1 1 4 6 4 5 6 1 6 7 1 7 8]

↑ ↑ ↑ ↑ ↑ ↑
colptr = [ 1 4 7 10 13 16 ]

For the sake of argument, let’s assume the nonzero values are
stored in double precision (double) and the indices are stored
as integers (int). The storage requirement for a general matrix
within this format amounts to Nz(1·double+1·int)+ncol·int.

Here, we build upon an idea of [28]. The CSC representation
is not unique. The row indices and the corresponding values
can be reordered within a given column without changing the
matrix. We capitalize on this observation and show how the
storage requirements can be cut down. Let us examine our
example again. In the first and second column, the information
contained in the values is redundant since it coincides with
the order of the traversal of the rows along columns 1 and



2. Now, if we re-order the row indices of the third column
according to their entries in vals as shown below (in bold),
the values corresponding to row 3 will become also redundant.
vals = [ 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3]
rowind = [ 1 2 3 3 4 1 4 6 1 6 4 5 7 1 6 1 7 8]

↑ ↑ ↑ ↑ ↑ ↑
colptr = [ 1 4 7 10 13 16 ]

Once we perform this for all columns, the role of the
values becomes obsolete. In fact, we know how many entries
per column we have from the colptr and we need simply to
traverse them in the order of appearance.

So in practice, we do not need to store the mesh matrix
but only its sparsity pattern, namely rowind and colptr.
Furthermore, if all elements are of the same type the colptr can
also be omitted and only inferred. Again this memory storage
reduction has a practical value in concurrent infrastructures
with limited memory resources.

VI. ASSEMBLY IMPLEMENTATION

a) serial: The sparse assembly based on multiplication
patterns described in sections III and IV can be easily incor-
porated on top of existing sparse matrix-matrix multiplication
kernels. As many existing codes such as the one available in
Matlab [21] or csparse [29] rely on the classical SpGEMM
description [28]. In general for the computation of the product
C = AB in (CSC) format, both A and B need to be accessed
by columns, and the resulting matrix C is created one column
at a time [29]. For the j-th column of B, B∗j = [b1j · · · bkj ]>,
the column C∗j is given by

C∗j =

k∑
i=1

A∗ibij = [A∗1 · · ·A∗k]

b1j...
bkj

 . (4)

In practice, the serial algorithm operates in two stages. A first
stage where the number of nonzeros of the resulting matrix is
evaluated and a second stage where the assignment is actually
performed. Please note, that when the underlying mesh does
not change within a simulation, the first stage needs to be
performed only once. This yields considerable gains, knowing
that the cost of the first stage in general is about 20− 30% of
the overall computation time.

b) GPU: To parallelize the assembly process, we need
to parallelize the underlying linear algebra operation. The
core of our assembly process is formed by sparse matrix-
matrix products with action maps. In order to achieve high
performance, we aim to integrate action maps into the most
efficient sparse BLAS routines. There has been a consistent
research effort on the parallelization of sparse matrix-matrix
products, e.g., [10], [30], [31], [32].

Our approach takes advantage of the algorithmic description
of bhSparse [31] for spGEMM (C = A · B). While our
assembly approach could be built on top of other libraries,
bhSparse achieved the best performance in our tests. The
biggest challenges for sparse matrix-matrix multiplication
include (1) the number of non-zero entries in the resulting
sparse matrix is unknown, (2) parallel insertion operations for

the resulting sparse matrix have a high potential cost, and
(3) load imbalances for the general spGEMM can severely
slow down the computation on parallel devices like the GPU.
bhSparse tackles these issues in a four stage approach:

The first stage computes in parallel an upper bound for the
number of non-zeroes in each column of the result matrix. For
each estimate, the algorithm runs through all non-zero entries
in the corresponding column in matrix A and accounts for the
nonzeros of the column in B whose elements will be multiplied
with entries found in A. The second stage bins the columns
based on the expected number of nonzeros for the columns
of C, as computed in (i). This binning step ensures that the
most fitting algorithm for the expected nonzero count can be
chosen and load balancing on the GPU becomes trivial. The
third stage chooses for each column of C one of three methods
for computing the final entries: the heap method [33], the ESC
method [34], or the merge method [30]. The heap method and
the ESC method can be carried out using efficient scratch-
pad memory (i.e. shared memory in CUDA, local memory in
OpenCL). The merge method requires multiple kernel launches
and memory allocations. The final stage rearranges the results
of the previous step in the final CSC format.

For our mapped matrix-matrix multiplication we perform
the same stages. The first two stages work on the rowind
and colptr only. Thus, no modifications are required for the
general case. In case the colptr has been omitted, we can again
unroll the loop constructs in those kernels to speed up the
computation. In the third stage, we replace the multiplication
with the action map lookup based on the traversal order of
the elements. To implement action maps on the GPU, we use
textures. Textures use a separate cache that is similar in speed
to scratch-pad memory. As scratch-pad memory is heavily used
by the sparsity pattern multiplication itself, we refrain from
using it to store the action maps. Because action maps are
small, their entire contents usually stays in cache after first use.
Thus, the overhead over a simple matrix-matrix multiplication
is negligible. Additionally, for nonlinear or time dependent
problems we can build on the fact that assembly is carried out
in each iteration, thus we can perform binning only once and
reuse the bins. In case the mesh is adjusted from one iteration
to the next, we only need to re-bin for those columns that were
affected by the mesh operation. In this way, we can save up
to 40% of the overall assembly cost.

VII. IMPACT OF DATA LAYOUT

Conventional sparse matrix assembly algorithms proceed
by data insertion at random locations, which often results in
poor memory access patterns. To illustrate this problem, let us
consider the example in Fig. 1. Two layouts of the same mesh
are considered, an original natural ordering with a poor layout
and a cache friendly version obtained by means of the reverse
CuthillMcKee algorithm (RCM) for node reordering [35]
followed by a re-ordering of faces based on the smallest index
of their nodes.

We can readily observe that there is a performance improve-
ment for conventional methods such as Matlab sparse [36]



and the recent Fsparse [25] as the layout becomes more cache
friendly. However the improvement is more dramatic for matrix
multiplication based assembly.
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Fig. 1: Car mesh colored based on the original element ordering
(a), and the Layout of its element-node matrix E (b). The
same mesh is shown in (c) and (d) after an RCM re-ordering.
The chart (bottom) shows the impact of the reordering on
the assembly performance for different methods. (Assembly
applied to 2M elements using a linear triangle (1 dof/node).
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Fig. 2: Performance (in sec.) of our approach on the assembly
of linear triangles (1 dof/node) for different mesh orderings.

To assess the effect of mesh reordering, we tested on various
data sets from different academic and industrial sources. In
our tests the original data (natural ordering), was reordered
using different approaches: i) spectral, ii) space filling curves
(Morton curves), and iii) RCM. i) Spectral ordering seeks
to reduce the envelope of the graph Laplacian through the
minimization of the sum of squared difference of node labels.
By restating the problem as a continuous problem, a solution
can be obtained as the eigenvector associated with the smallest
positive eigenvalue of the Laplacian a.k.a Fiedler vector [37].
For problems of significant size, calculations need to be carried
out in a multilevel fashion. In our experiment we adopt an
algebraic multi-grid strategy driven by an aggressive Galerkin
product based simplification of the Laplacian matrix [38],
[39]. ii) Space filling curves (SFC) arise when attempting a
linearization of higher dimensional spaces [40]. Two commonly
used ordering are the Morton and the Peano-Hilbert orderings,
which exhibit good locality preserving behavior. iii) The RCM

ordering method originated from the need to reduce bandwidth
for use with numerical solvers. It can be regarded as an iterative
variant of the basic breadth first search (BFS). It first tags a
given node as first node. The unnumbered neighbors of any
ordered node are then ordered by increasing degree. The final
order is then reversed. Two crucial elements in this algorithm
are finding a starting node and breaking ties when degrees
are similar. The variant proposed by George and Liu [35]
obtains the starting node iteratively by searching for a pseudo-
peripheral node. Ties are broken based on the initial ordering.
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Fig. 3: Comparison of the speedup of Fsparse and our approach
w.r.t. sparse2 (green line), for the linear triangle, with 1 DoF
per node. Meshes were reordered using RCM.

250K 500K 800K 1M

Sparse2 (Timing) 3.76 6.83 9.11 15.07

MFEM (serial) 2.89 2.59 2.24 2.79

Ours CPU 4.70 4.32 3.28 4.33

Ours CPU (w. reordering) 9.40 7.42 5.95 7.39

Ours GPU 34.18 29.70 25.31 30.76

Ours GPU (w. reordering) 94.00 97.57 75.92 88.65
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Fig. 4: Assembly of the stiffness matrix for the 6 nodes triangle
with 2DoF per node for a rectangular plate mesh. Relative
speedup of all approaches is shown w.r.t Sparse2 timings (in
sec.).

Typical performance measurements are summarized for
meshes of sizes ranging from 2 to 29 million elements in
Fig 2. To reduce the effects of other factors we restricted
the experiments to the case of basic linear triangles with one
degree of freedom per node, see e.g. [27]. The data suggests that
ordering can overshadow the real algorithmic performance and
operation counts. The tighter matrix bandwidth generated by the
RCM reordering, see Fig 1-d, is reflected in the performance.

The observed speedup can be explained algebraically. In
fact, for a rectangular sparse matrix A, the bandwidth of a
column k, is the maximum width between its nonzero entries.



The column bandwidth, β of the matrix A can be then defined
as the maximum of its columns’ bandwidths. It ensues that the
matrix AA> has a bandwidth of b ≤ β − 1 [41]. This result
implies that during multiplication, the maximum bandwidth
used is bounded by the column bandwidth of A.

VIII. EXPERIMENTAL RESULTS

The hardware setup for our experiments consists of an Intel
Xeon E5-2637 v3 CPU running at 3.50GHz, 32GB of memory
and an NVIDIA Tesla K40m with 2880 compute cores and
12GB of memory running at 745MHz. For testing purposes,
we used the CUDA version of our implementation. However,
using our OpenCL implementation, our algorithm can also run
on different graphics hardware.

We tested against the well established serial method, namely
the Sparse2 function from SuiteSparse package [22], which
directly assembles the coordinates triplets into a sparse matrix.
A more recent assembly method, which takes advantage of
the multicore structure of modern CPUs was reported under
the name Fsparse [25]. The chart in Fig.3 compares the
performance of both approaches to ours on a toy problem,
namely, the assembly of the linear triangle (CST) with one
degree of freedom per node. Our serial implementation achieves
speed-ups ranging from 5 to 7 w.r.t Sparse2. The speedup of the
serial Fsparse on the other hand stays below 2. The reordering
time is not included in the timings. Nonetheless reordering
methods such as RCM are relatively cheap. In fairness to both
methods, they are more general than our approach, in the sense
that they can build arbitrary matrices.

To evaluate the performance of our approach on more practi-
cal settings, we measured the performance of our approach on
the 6 node triangle with 2 degrees of freedom on a rectangular
plate mesh, Fig. 4, and the linear (4 points) as well as the
quadratic (10 points) tetrahedron with 3 degrees of freedom
on the mesh of a bracket with a hole, Fig. 5. In these tests,
we used meshes with increasing element count, starting from
250K and finishing at 1M. For the rectangular plate experiment,
we use the performance of Sparse2 from the SuiteSparse
package [22] as a reference timing. Additionally, we report the
serial performance of the specialized finite element package
MFEM [42] from LLNL for reference (According to the authors
of the latter package, they have explored using sparse matrix-
matrix multiplication (SpGEMM) for finite-element assembly,
using Hypre’s implementation of that computational kernel).
With our approach, the speedups achieved on the GPU remain
in the range of two orders of magnitude. The speedup of our
serial implementation on the CPU ranges from 10 to 25.

Benchmarks on the assembly of structural shell elements
with 6 degrees of freedom per nodes, in this case the standard
DKT (Discrete Kirchhoff Triangular) element [43], [44], reveals
a consistent speedup across varying meshes from different
industrial sources. The speedup ranges from 125 to 168 on
the GPU and reaches about 15 on the CPU for our serial
implementation.

As discussed in the related work section, existing assembly
approaches on the GPU rely on serial preprocessing or

250K 500K 800K 1M

Sparse2 (timing in s.) 4.42 9.80 15.08 21.24

MFEM (serial) 3.4 3.1 2.7 2.6

Ours CPU 6.7 6.7 7.1 6.4

Ours CPU (w. reordering) 22.3 23.6 21.5 25.0

Ours GPU 53.7 52.9 52.5 52.8

Ours GPU (w. reordering) 114.4 115.5 116.4 118.6
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Fig. 5: Assembly of the stiffness matrix for the 4-nodes (top),
and 10-nodes (bottom) tetrahedron, 3DoF per node, for the
bracket with hole shown to the left. Relative speedup of all
approaches is shown w.r.t Sparse2 timings (in seconds).
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Fig. 6: Assembly of the stiffness matrix for shells (Discrete
Kirchhoff Triangular element DKT [43], [44]) 6 DoF per node
for different meshes. Relative speedup of all approaches is
shown w.r.t Sparse2 timings (in seconds).

postprocessing steps. In table I, we compare the best performing
method of [18], namely SharedNZ to ours. Their test data is
supplied with preprocessing results (partitioning and coloring)
and their timing does not include those preprocessing steps.

IX. CONCLUSION

In this paper we demonstrated a simple, yet efficient approach
to sparse matrix assembly based on sparse multiplication



patterns. We analyzed the impact of memory layout on
performance and provided the concept of action maps to
reduce the memory footprint of our underlying representation.
The experimental results on the CPU and on the GPU
reveal considerable gains in performance. The simplicity and
modularity of our approach makes it suitable for integration
into various platforms.

TABLE I: Sparse assembly comparison, timings in seconds

Assembly
SharedNZ [18] Ours (GPU)

2D Mesh ( 1.2M∆) 0.14 0.096
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