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Abstract

Quadrangular remeshing of triangulated surfaces has received an
increasing attention in recent years. A particularly elegant approach
is the extraction of quads from the streamlines of a harmonic field.
While the construction of such fields is by now a standard tech-
nique in geometry processing, enforcing design constraints is still
not fully investigated. This work presents a technique for handling
directional constraints by directly controlling the gradient of the
field. In this way, line constraints sketched by the user or automat-
ically obtained as feature lines can be fulfilled efficiently. Further-
more, we show the potential of quasi-harmonic fields as a flexible
tool for controlling the behavior of the field over the surface. Treat-
ing the surface as an inhomogeneous domain we can endow specific
surface regions with field attraction/repulsion properties.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations; J.6 [Computer Applications]: Computer-Aided
Engineering—Computer-aided design

Keywords: quad-remeshing, harmonic fields, quasi-harmonic
fields, gradient constraints, conductivity, field control

1 Introduction

Surface meshes delivered by laser scanning technology or iso-
surface extraction are in general irregularly sampled which reduces
the efficiency of subsequent mesh processing applications. There-
fore, conversion into regular triangular or quadrilateral meshes is a
common requirement. While triangular meshes are a widespread
surface representation, quadrangular meshes are preferable for a
considerable number of applications. Their tensor-product nature
makes them particularly suited for serving as the parameter do-
main for spline representations [Li et al. 2006]. Besides com-
puter graphics, other indispensable applications comprise simula-
tions using finite elements or architectural design [Liu et al. 2006;
Pottmann et al. 2007]. This stimulated lively research and continu-
ous progress in the areas of quad generation and remeshing.

In this paper, we focus on the design aspects of quad remeshing
using vector fields defined over triangular meshes. While the con-
struction of such fields is by now a standard technique in geometry
processing, enforcing design constraints is still not fully investi-
gated. This work features the following contributions. First, we
present a technique which allows control over the gradient of a har-
monic field by aligning it to a set of line constraints. The constraints
can be sketched by the user or automatically obtained using a fea-
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ture line detection algorithm. Furthermore, inspired by the problem
of modeling heat flow on inhomogeneous surfaces, we investigate
the potential of quasi-harmonic fields as a tool for controlling the
behavior of the field over the surface. We demonstrate that it can be
used for allowing certain regions on the surface to attract or repulse
field contour lines. Both techniques can be used separately or to-
gether without affecting the computational cost since the Laplacian
is a special case of the quasi-harmonic operator. In all cases the run-
time is dominated by solving a single linear system. Additionally,
we address issues related to quad construction from the resulting
vector fields.

Our approach offers the advantage that no post-processing is needed
for resolving clipped primitives as proper alignment is addressed
during the field construction stage. Additionally, the tools presented
can be seamlessly used in combination with many of the existing
quad remeshing techniques [Kälberer et al. 2007; Ray et al. 2006;
Tong et al. 2006].

The rest of this paper is organized as follows. An overview of re-
lated literature is given in Section (2). Section (3) addresses the
construction of gradient constrained harmonic fields and illustrates
how quasi-harmonic fields can be used as a tool for field design.
The construction of quad meshes is covered in Section (4). Sec-
tion (5) presents and discusses the results of this work.

2 Related work

In order to fulfill the ever increasing need of quad representations
in a wide range of disciplines, research has a productive tradition in
the closely related fields of quad-remeshing, parameterization, and
vector field design bringing forth a large variety of approaches.

The work of Alliez et al. [2003] on quadrangulation of triangle
meshes uses principle curvature directions to guide the remesh-
ing process. This approach was later extended by [Marinov and
Kobbelt 2004] to arbitrary meshes by applying curvature line in-
tegration on the underlying surface. Dong et al. [2005] compute
a harmonic scalar field on the surface and determine the quadran-
gular facets by tracing integral lines of its gradient and orthogonal
co-gradient vector field.

Boier-Martin et al. [2004] employ spatial- and normal-based clus-
tering in order to segment the given triangular mesh into patches
from which polygons are computed. Those are subsequently
quadrangulated and subdivided resulting in the final quad-mesh.
Kharevych et al. [2006] generate a patch layout using circle patterns
while [Dong et al. 2006] obtain a segmentation from the Morse-
Smale complex of the eigenfunctions of the Laplacian. Marinov
and Kobbelt [2006] propose a two-step approach which first seg-
ments the mesh using a variant of variational shape approxima-
tion [Cohen-Steiner et al. 2004] and then quadrangulates each patch
independently using curves with minimum bending energy.

Tong et al. [2006] design quadrangulations by specifying a singu-
larity graph on the triangular mesh. It allows for the representation
of line singularities as well as singularities with fractional indices.
Based on a modified discrete Laplacian operator, two scalar fields
whose iso-contours form the quadrangular mesh are computed. Ray
et al. [2006] determine a parameterization of a surface with ar-
bitrary topology by defining two piecewise linear periodic func-



Figure 1: Heat distribution on a homogeneous (left) and inhomo-
geneous (right) plate, modeled using the Laplacian operator and
the quasi-harmonic operator respectively.

tions which are aligned with two orthogonal vector fields defined
on the surface. The quadrilaterals are subsequently extracted from
the bivariate parameterization function. Inspired by this approach,
[Kälberer et al. 2007] propose frame fields based on branched cov-
ering spaces on a surface. In their context branch points are concep-
tually similar to singular points with fractional indices. They con-
sider locally integrable fields which are not divergence free to im-
prove the alignment of parameter lines with the given vector field.

Closely related to our approach, Fisher et al. [2007] introduce a
technique for the design of tangent vector fields based on discrete
exterior calculus which is targeted at designing textures on surfaces.
They constrain line integrals of a given vector field over the mesh
edges according to a sparse set of user-provided constraints. Unlike
their approach which operates on line integrals, we enforce vector
constraints directly on the gradient of the field.

3 Constrained fields on surface meshes

In this section, we describe the techniques for controlling the con-
struction of constrained scalar fields on triangular surface meshes.
We start from the simple observation that the contours (co-gradient
streamlines) of a scalar field are generally easier to construct.
Therefore, it seems natural to apply the constraints directly to the
contours. Thus the aim is to build harmonic fields whose contours
satisfy the design constraints. In order to get a well behaved field on
the surface mesh, we require the field to be harmonic. In the present
discrete setup this translates to the construction of a piecewise linear
function f within each triangle. The construction of such a function
amounts to determining its values at the mesh vertices.

In order to control the behavior of the contours, we present two
scenarios. The first imposes constraints on the gradient of the har-
monic field while the second relies on quasi-harmonic fields which
allow for more flexibility in vector field design in comparison to
harmonic fields. In both scenarios, the field computation reduces
to the solution of a linear system, a task that can be performed effi-
ciently using standard direct or iterative solvers [Davis 2004; Chen
et al. 2006].

3.1 Gradient constraints

On a triangular surface mesh, the gradient of a piecewise linear
scalar field f is a piecewise constant vector field which exhibits
discontinuity on the triangle sides. Analytically, on a triangle T
described by its vertices {v1, v2, v3} and of area A and normal n
the gradient can be derived as

∇ f = f1
n× (v3 − v2)

2A
+ f2

n× (v1 − v3)

2A
+ f3

n× (v2 − v1)

2A
. (1)

Figure 2: Contours of quasi-harmonic fields on a rectangular
plate. The ratio of conductivity (inversely related to diffusion) be-
tween the large and small rectangle was set to 1, 0, 1e-3, 1e3 from
left to right respectively. Dirichlet boundary conditions were ap-
plied to the top and bottom sides and Neumann boundary condi-
tions to the right and left sides of the plate.

With this definition in mind, the alignment of contours to line
constraints described by the triangle edges they traverse {ei, i =
1..n} amounts to imposing the following set of equations on the
scalar field f

∇2 f = 0
< ∇ f , ei > = 0 , i = 1..n,

where < ·, · > stands for the dot product. In matrix form, this leads
to an augmented matrix consisting of the Laplacian matrix and ad-
ditional rows representing the gradient constraints. For this linear
system to have a unique solution the value of the scalar field needs
to be prescribed for at least one vertex.

We note that this approach is independent of the way the line con-
straints are determined. They can be obtained as feature lines au-
tomatically detected using methods such as [Ohtake et al. 2004;
Yoshizawa et al. 2005], or defined by the user using a sketching
interface. In a preprocessing step, an intermediate mesh which con-
tains new triangles along the feature lines is constructed and all the
calculations are performed on it. As the re-triangulation is adaptive
w.r.t. the feature lines, the mesh size does not increase significantly.
This way our approach is more cost effective in comparison to the
construction of higher order fields on the whole surface since elab-
orate interpolation schemes within the triangulation are avoided.

3.2 Quasi-harmonic fields

While gradient constraints allow to directly enforce field directions
by adding additional constraints to the harmonic equation, the ap-
proach described in this section allows certain regions to attract
or repulse contour lines without introducing additional constraints.
For this purpose, we rely on the notion of quasi-harmonic maps [Za-
yer et al. 2005] to control the behavior of the field contours. The
inspiring idea behind the approach stems from simple physical con-
siderations. Let us consider the steady state heat equation on a
quadrangular plate. In a first stage, we treat the surface as a homo-
geneous domain in the sense that the heat conductance is constant
over the whole surface. The heat distribution can be obtained by
solving a Laplace equation with prescribed conditions. In this ex-
ample, we apply Dirichlet conditions to the top and bottom sides
and Neumann boundary conditions to the right and left sides as il-
lustrated in Figure (1-left).

On the other hand, if we impose specific conductance values for
the circular and rectangular sub-domains inside the plate, the stan-
dard Laplace equation is not suitable anymore for modeling the heat
distribution and we have to rely on the so called quasi-harmonic



Figure 3: Contours of a quasi-harmonic field on a rectangular
plate. The conductance inside the circular and rectangular re-
gions (red) is several orders of magnitude higher than the plate
conductance.

equation which incorporates the conductance terms, and is there-
fore sensitive to the inhomogeneous nature of the plate. The heat
distribution in this setup is depicted in Figure (1-right).

This example illustrates how simple scalar conductance values can
alter the heat distribution on a simple domain. We capitalize on this
observation for controlling the behavior of the contour lines.

Our approach proceeds by altering the scalar conductance val-
ues C (which are inversely related to diffusion) at the regions of in-
terest and minimizes the following energy functional over the whole
surface domain Ω

∫
Ω
(C∇ f ) · (∇ f ) , (2)

with prescribed Dirichlet or Neumann boundary conditions. Fig-
ures (2) and (3) illustrate the effect of conductance values on the
field contour lines. When the conductance is set to 0 on a certain
region the field behaves as if Neumann boundary condition were
applied at the region boundary. Higher diffusion values make the
region repulse the contour lines while lower values make the region
attract them.

4 Quad construction

Once the constrained harmonic field has been computed, we use its
contours to determine the orientation of the quads. The bottom row
of Figure (4) illustrates the work-flow of our quadrangulation algo-
rithm consisting out of two main steps. Firstly, we trace streamlines
along and orthogonal to the contours of the harmonic field. In a sec-
ond step, we use the set of connected streamlines to obtain the final
quadrangular mesh.

More precisely, we compute given an harmonic scalar value at ev-
ery vertex of the triangular mesh, the piecewise constant gradient
on each triangle using the gradient discretization provided in equa-
tion (1). As it is usually desirable to have quads as rectangular as
possible, we also determine the vector field orthogonal to the gradi-
ent vectors on each triangle which will be denoted in the following
as co-gradient field. The co-gradient field is computed as the vec-
tor product of the gradient vector and the triangle normal on each
face of the mesh. In specific situations the placement of line con-
straints may lead to a configuration where two edges of a triangle
are constrained. A special treatment consisting of targeted subdivi-
sions of the affected faces yields a correct behavior as illustrated in
Figure (5).

(a) Dong et al. [2005]

(b) our approach

Figure 4: Comparison between the approach introduced by Dong
et al. [2005] (a) and our technique (b). The textured models (left
column) illustrate the behavior of the contours of the harmonic
fields for both techniques. For our approach the gradient is con-
strained orthogonal to the ascending edges and tangential to the
base edges of the tetrahedron. This way, we avoid clipped primi-
tives and obtain a proper alignment of the quads (right column) to
the features of the surface.

We regard a streamline as a piecewise linear curve on the surface
which integrates one of the tangential vector fields and whose ver-
tices are located on the edges of the triangular mesh. Starting from
a given seed point, the streamline is integrated in the positive and
negative field direction until it either creates a loop, approaches an-
other streamline too closely or meets a singularity.

The singularities in the gradient vector field are detected based on
the definition of the index of a critical point. Consider a continu-
ous vector field V and a closed curve γ . Suppose that there are no
critical points of V on γ . Let us move a point P along the curve in
the counterclockwise direction. The vector V (P) will rotate during
the motion. When P returns to its starting place after one revolution
along the curve, V (P) also returns to its original position. Dur-
ing the journey V (P) will make some whole number of revolutions.
Counting these revolutions positively if they are counterclockwise,
negatively if they are clockwise, the resulting algebraic sum of the
number of revolutions is called the winding number of V on γ . The
index of a point in the vector field V is then defined as the winding
number of a small counterclockwise oriented circle centered at that
point. A discretization of this definition for piecewise linear vector
fields on surfaces is introduced in [Ray et al. 2007]. We use a sim-
plified version of their formulations which allows us to compute the



Figure 5: In the special case where a line constraint (bold blue
lines) covers two edges of one triangle, the gradient vector on the
triangle (green) cannot be aligned to both vector constraint (or-
ange) simultaneously. This is remedied by half-splitting the triangle
as shown in the image to the right.

(a) (b) (c)

Figure 6: Remeshing of a reconstructed laser-scanned Turbine
Blade model with irregular triangulation. The remeshing process is
guided by gradient constraints indicated by the blue lines (b). The
remeshed result (c) as well as the zooms (a) show that the quads are
properly aligned along the blade as well as the selected prominent
features.

index at a vertex v of our gradient vector field as

I(v) =
1

2π ∑
e∈N (v)

Θ(e)+Ad(v) (3)

where Ad(v) is the angle deficit at v and Θ(e) is the angle between
the gradient vectors~g(t0) and~g(t1) after flattening the pair of trian-
gles t0 and t1 adjacent to the edge e. We thus determine the extremal
vertices as well as the saddle points as the points with the index 1
and −1, respectively.

In order to trace streamlines on the surface, we sample the line con-
straints regularly and choose the selected points as seeds for the
gradient streamlines. To cover the whole mesh we also place seed
points on both sides of the streamline while it is traced according to
a user-defined distance measure which controls the quad size. The
co-gradient streamlines are traced accordingly by propagating them
over the surface starting from the line constraints.

In the second step, we reconstruct quads from the set of stream-

(a)

(b)

(c)

(d)

Figure 7: The laser-scanned hand model is remeshed guided by
gradient constraints (a) which permits the resulting quads to follow
the shape of the hand in an intuitive manner (c)+(d). Furthermore,
our approach automatically places the singularities at the finger-
tips properly although the constraints are chosen very distant to
them (b).

lines. For this, we first determine the intersection points of gradient
and co-gradient streamlines. In order to perform this efficiently,
we associate the line segments of all streamlines with the triangles
they are integrated on and compute the intersections on all trian-
gles. This way, we obtain a graph of streamlines which are inter-
connected at their intersection points. Starting at these intersections
we traverse the graph to create the quadrangular faces.

5 Results and Discussion

We tested our approach on a benchmark of triangular meshes cover-
ing synthetic and reconstructed laser-scanned data. Typical results
are featured in Figure (4) and Figures (6)-(8).

A comparison to the clipping approach used in [Dong et al. 2005],
on a tetrahedron model reveals that our approach handles sharp fea-
tures in an accurate manner as the alignment to line constraints is
performed during the field computation (see Figure (4)).

Figures (6)+(7) illustrate remeshing results of our approach on ir-



(a) (b) (c) (d)

Figure 8: Remeshing of the mannequin model using areas with modified conductivity (red regions) and gradient constraints (blue lines). The
variation in the conductivity creates a repulsive effect such that the contour lines of the harmonic field (b) and thus the streamlines (c) bend
around the eye region resulting in a special consideration of this surface part in the final quadrangular remeshing (d). Note that the gradient
constraints specified at the lips as well as the neck ensure a proper quad alignment.

regularly sampled data reconstructed from laser scans. While line
constraints are useful to align quads to important features of the sur-
face as illustrated on the Turbine Blade model, they can be further
used to guide streamlines along user-specified constraints. The re-
sulting remesh of the hand model reflects that the quads intuitively
align to the shape of the surface.

In Figure (8) we apply quasi-harmonic fields for driving the remesh-
ing process. Using higher conductivity, contours around the eye re-
gion are repelled which allows the generated quads to follow the
natural shape of the eyes.

Our approach is fast as the runtime is dominated by the solution
of a linear system which can be solved efficiently using direct or
iterative solvers. Even for large meshes such as the hand model
consisting out of nearly 400K triangles runtimes are in the order
of seconds. The subsequent streamline tracing as well as the quad
generation is performed in only a few seconds.

As our approach enforces directional constraints it may introduce
additional singularities especially when certain line constraints
form a closed curve. Those can be found efficiently during stream-
line tracing using the singularity detection technique described ear-
lier. We do not see this as a limitation of our approach as it can
be used to place new singularities at desired locations for design
purposes such as the fingertips of the hand model illustrated in Fig-
ure (7).

6 Conclusion

In this paper, we presented a set of flexible and versatile tools for
designing scalar fields on surfaces. Two scenarios for controlling
the field behavior on the surface are demonstrated. By operating
directly on the gradient of the scalar field our technique can en-
force directional constraints which makes it suitable for avoiding
tedious post processing, generally needed for aligning quads to im-
portant features. Regarding a surface as an inhomogeneous domain,
we introduced quasi-harmonic fields as a design tool which endows
surface regions with attraction/repulsion properties. This makes it a

more general and flexible design tool in comparison to standard har-
monic fields. These techniques can be used independently or on top
of existing field-based quad-remeshing methods. The substantiated
results demonstrate the quality of our quad-remeshing approach and
confirms the flexibility of our field construction techniques.
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RAY, N., W.-C., L., LÉVY, B., SHEFFER, A., AND ALLIEZ, P.
2006. Periodic global parameterization. ACM Transactions on
Graphics 25, 4, 1460–1485.

RAY, N., VALLET, B., LI, W.-C., AND LÉVY, B. 2007. N-
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