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Abstract

We present a novel versatile, fast and simple framework to generate high-
quality animations of scanned human characters from input motion data.
Our method is purely mesh-based and, in contrast to skeleton-based anima-
tion, requires only a minimum of manual interaction. The only manual step
that is required to create moving virtual people is the placement of a sparse
set of correspondences between triangles of an input mesh and triangles of
the mesh to be animated. The proposed algorithm implicitly generates re-
alistic body deformations, and can easily transfer motions between human
subjects of completely different shape and proportions.

Our approach handles many different types of input data, e.g. other animated
meshes and motion capture files, in just the same way. Finally, and most
importantly, it creates animations at interactive frame rates. We feature two
working prototype systems that demonstrate that our method can generate
lifelike character animations from both marker-based and marker-less optical
motion capture data.
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1 Introduction

In recent years, photo-realistic computer-generated animations of humans
have become the most important visual effect in motion pictures and com-
puter games. In order to obtain an authentic virtual actor, it is of great im-
portance that she mimics as closely as possible the motion of her real-world
counterpart. Even the slightest unnaturalness would be instantaneously un-
masked by the unforgiving eye of the viewer and the illusion of seeing a real
person would be compromised.

It is thus no wonder that the number of working hours that animators spend
in order to live up to these high requirements in visual quality is consider-
able. To generate virtual people, they make use of a well-established but
often inflexible set of tools (see also Sect. 2) that makes a high amount of
manual interaction unavoidable. First, the geometry of the human body is
hand-crafted in a modeling software or obtained from a laser scan of a real
individual. In a second step, a kinematic skeleton model is implanted into
the body by means of, at best, a semi-automatic procedure. In order to
couple the skeleton with the surface mesh, an appropriate representation of
pose-dependent skin deformation has to be found. Finally, a description of
body motion in terms of joint parameters of the skeleton is required. It can
either be designed in a computer or learned from a real person by means
of motion capture. Although the interplay of all these steps delivers anima-
tions of stunning naturalness, the whole process is very labor-intensive and
does not easily allow for the interchange of animation descriptions between
different virtual persons.

In this paper, we present Confluent Motion, a novel versatile, fast and much
simpler approach to animate virtual characters. Our method makes the fol-
lowing contributions:

Confluent Motion is a purely mesh-based animation paradigm that does not
rely on kinematic skeletons. Nevertheless, it seamlessly integrates into an
animator’s traditional animation workflow. It can be used to realistically
animate static meshes of arbitrary humans with minimal effort. To this end,
only a sparse set of fixed correspondences between triangles of a moving in-
put mesh and triangles of the output mesh has to be specified. Since only a
coarse set of correspondences is required, we can use arbitrarily structured
input meshes, i.e. even segmented or disconnected geometry models, that
topologically differ from the output mesh. This enables Confluent Motion to
process different types of inputs, such as animated meshes created by skilled
artists, as well as raw motion data acquired with marker-based or marker-free
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Figure 1: Confluent marker-based animation: Subsequent frames showing
the female scan authentically performing a soccer kick. Motion data have
been acquired by means of a marker-based motion capture system. Note
the realistic protrusion of the chest when she blocks the ball, as well as the
original head motion.

optical motion capture systems, in just the same way. The presented frame-
work also produces realistic pose-dependent body deformations implicitly by
means of a harmonic field interpolation. Furthermore, it solves the motion
transfer problem, i.e. it enables the animator to interchange motions between
persons of even widely different body proportions with no additional effort.
Lastly, and most importantly, the method computes poses of the target mesh
at interactive frame rates. This way, the animator is given the possibility to
modify animations with instantaneous feedback. Although we regard Con-
fluent Motion primarily as a tool for human animation, it can be applied in
the same way to arbitrary moving subjects.

The paper proceeds with a review of closely related work in Sect. 2. An
overview of the approach is given in Sect. 3, and the nuts and bolts of our
shape deformation method are described in Sect. 4. We demonstrate that we
can realistically animate people using raw motion data from both marker-
based, Sect. 5, and marker-less, Sect. 6, optical motion capture systems as
inputs. We also show that Confluent Motion allows for the creation of 3D
videos of humans by animating highly-detailed laser scanned meshes. We
show the high visual quality of our animations in Sect. 7 and conclude in
Sect. 8.
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2 Related Work

Confluent Motion provides a unified solution to many algorithmic subprob-
lems in traditional human character animation by capitalizing on recent ad-
vances on mesh deformation techniques presented in the field of geometry
processing.

The first step in human character animation is the acquisition of a human
body model comprising a surface mesh and an underlying animation skele-
ton [5]. Surface geometry can either be hand-crafted or scanned from a
real person [3]. The skeleton model is either manually designed or inferred
from input motion data [15]. It is also feasible to jointly create surface and
skeleton models by fitting a template to body scans [25, 4]. Body varia-
tions across different human individuals can also be encoded in the shape
description [3, 4].

Mesh and skeleton have to be connected such that the surface deforms re-
alistically with the body motion. A popular method serving this purpose
is skinning [18]. It represents vertex displacements as weighted set of influ-
ences from adjacent joints. Weights can be hand-crafted or automatically
inferred from examples [26, 32, 21]. Deformation models can also be cre-
ated by interpolation between example scans [2]. Sand et al. [24] infer a
skinning model by combining marker-based motion capture with a shape-
from-silhouette method.

The virtual human is awakened by specifying motion parameters for the joints
in the skeleton. Common methods to generate such motion descriptions are
key-framing [9], physics-based animation [11] or optimization-based creation
of physically plausible movements [12]. The most authentic motion data can
be acquired through optical marker-based [6, 15] or marker-free motion cap-
ture [20]. Unfortunately, reusing motion capture data for subjects of different
body proportions is not trivial, and requires computationally expensive mo-
tion editing [17, 13] and motion retargetting techniques [14, 31].

By extending ideas on mesh-based surface deformation we have designed a
new versatile and simple framework that overcomes several limitations of the
classic animation pipeline. As highly detailed 3D triangle meshes become
more and more accessible, there has been an increasing interest in devising
techniques which can work directly on the these geometric representations
without passing through intermediate pipelines such as the one mentioned
above. In the mesh editing context, [1, 27, 33, 34, 16, 19] rely on the notion
of differential coordinates to deform a mesh while preserving its geometric
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detail. This notion was extended to the volumetric setting in [35]. The main
difference between these schemes lies in the way they propagate the defor-
mation across the mesh. On the animation side [29] propose an approach
that is similar in spirit but aims at a different goal. Using a full body corre-
spondence between different synthetic models, their method can transfer the
motion of one to the other. [30] develops a mesh-based inverse kinematics
framework with potential application to mesh animation.

Our system is most closely related to the SCAPE method [4]. The SCAPE
model learns pose and shape variation across individuals from a database
of body scans and can animate scanned human body geometry from motion
capture by solving a nonlinear optimization problem. Confluent Motion ad-
dresses the animation problem by solving simple linear systems, hence deliv-
ering animations at interactive rates. By relying on the semantic similarities
between characters it also solves the retargetting problem on-the-fly.

3 Overview

It is the guiding idea behind the development of Confluent Motion to pro-
vide animators with a simple and fast framework to directly apply captured
motion to scanned human body models, Fig. 2. Thus, the input to our
framework are motion data that have been measured from real individuals
using marker-free or marker-less optical motion estimation methods. The
first processing step transforms these sequences of key body poses into a
sequence of postures of a simple triangle mesh model, henceforth termed
template mesh. We take advantage of existing marker-free motion estimation
methods that directly output such sequences of template mesh poses, Sect. 6.
Marker-based motion capture data can be straightforwardly transformed into
a moving template mesh representation using standard animation software,
Sect. 5. At the heart of our approach is an algorithm to transfer motion from
the moving template mesh onto the scanned body mesh, henceforth termed
the target mesh. We formulate the motion transfer problem as a deformation
transfer problem, Sect. 4. To this end, a sparse set of triangle correspon-
dences between the template and the target mesh needs to be specified and
an automatic deformation interpolation animates the target mesh. In Sect. 5
we show how Confluent Motion is applied to generate high-quality character
animations from marker-based motion capture data. The employment of a
marker-less motion estimation method as front-end to our pipeline is detailed
in Sect. 6. We summarize our results in Sect. 7 and conclude in Sect. 8.
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Male target mesh
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Confluent marker-less animation

Confluent marker-based animation

Figure 2: Illustration of the Confluent Motion pipeline.

4 Mesh Deformation

The algorithmic core of Confluent Motion is a mesh deformation method that
transfers motion from the template mesh onto the target mesh. We regard
motion transfer as a pure deformation interpolation problem, Sect. 4.1. This
way, we put aside all difficulties relating to the dissimilarities between the
template and the target, e.g. anatomical disparity (body proportions), and
take advantage of their semantic similarities, e.g. the fact that both mesh
representations have knees and elbows. For this purpose, the user is asked to
specify a set of correspondence triangles between the two meshes, Sect. 4.2.
In practice, this means that the user marks a set of triangles on the template
and assigns to each of them a corresponding triangle on the target. We resort
to this interactive step since there exists no viable automatic approach that
can identify body segments on meshes standing in general poses. The first
algorithmic challenge is to make the target mesh deform in the same way
as the template by only considering the sparse set of representative triangle
correspondences, Sect. 4.1. Furthermore, the generally large size of the high-
resolution scans requires the use of fast numerical methods to allow for robust
and efficient animation. Lastly, we have to take precautions to not make
singularity problems of our deformation interpolation scheme deteriorate our
animation results, Sect. 4.3.
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4.1 Deformation Interpolation

We formulate the deformation transfer problem as a deformation interpola-
tion problem. The motion of the template mesh from its reference pose (e.g.
Fig. 3a) into another pose (e.g. Fig. 3c) can be captured by the deformation
applied to a set of marked triangles. A correct interpolation of this deforma-
tion applied over the corresponding triangles of the target mesh would bring
it from its own reference pose (e.g. Fig. 3b) into the template’s pose (e.g.
Fig. 3d,e). To this end, both reference poses are roughly aligned a priori.
In the case of human animation, this deformation can be characterized as a
simple rotation for each triangle and a translational degree of freedom.

If the per-triangle rotations are specified as simple 3× 3 cosine matrices, the
interpolation has to cope with 9 × m interpolation points, where m is the
number of triangle correspondences. This gives rise to an intricate problem,
especially when the correlation between the components of each rotation
matrix is taken into account. Nevertheless, there have been some successful
approaches to propagate the effect of changing local frames on the whole
mesh [19, 27]. The quaternion representation, on the other hand, reduces the
size of the range to 4×m interpolation points. Most of the existing methods
for interpolating quaternion rotations rely on an intermediate function which
guides the interpolation, as it has been shown in the case of the spherical
or spline based interpolation. Such a function can be defined as distance
function or heat kernels as in [33], or as a harmonic scalar field as proposed
in [34]. Unfortunately, these methods do not apply to the current setting
as they can only interpolate from a single set of starting points to a single
set of ending points. Another breed of methods which allow for multiple
point interpolation can be found in [7, 22]. While these techniques work well
for locomotion, it is not clear how to extend them to our current general
setup. In fact, it is difficult to find a function which can interpolate all
the quaternion values and it is not clear how to assign specific rotations to
all triangles in a mesh. Following an idea proposed in [34], we regard each
component of a quaternion

Q = [w q1 q2 q3] (1)

as a scalar field defined over the entire mesh. Hence, given the values of
these components at the marked triangles, we interpolate each scalar field
independently. In order to guarantee a smooth interpolation we regard these
scalar fields as harmonic fields defined over the mesh. The interpolation can
then be performed efficiently by solving the Laplace equation

∇
2Q = 0 (2)
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over the whole mesh with constraints at the correspondence triangles. Once
the rotational components are computed, we average the quaternion rotations
of the vertices to obtain a quaternion rotation for each triangle. This way
we establish a geometric transformation for each triangle of the target mesh
M . However, this last step destroys its original connectivity and yields a
new fragmented mesh M ′. In order to recover the original geometry of the
mesh while satisfying the new rotations, we have to solve the problem in a
least square sense. In the following we sketch a simple way to setup this
optimization problem that eases the implementation effort. The problem
can be rephrased as finding a new tight mesh having the same topology as
the original target mesh, such that its differential coordinates encode the
same geometric detail as the ones of the fragmented mesh M ′. This can be
achieved by satisfying the following equation in terms of the coordinates x

of M and u of M ′:
∇

2
M

x = ∇
2
M ′u . (3)

In order to carry out this discretization correctly the topological difference
between both meshes should be addressed. Technically, the differential co-
ordinates of the fragmented mesh are computed by deriving the Laplacian
operator for the fragmented mesh and then applying it to its coordinates.
This, in fact, yields a vector of size 3×nT , where nT is the number of trian-
gles. We sum the components of this vector according to the connectivity of
the original mesh M . This yields a new vector Ureduced of size nV , where nV

is the number of vertices in M , and the discrete form of equation (3) reads
as simple as

LX = Ureduced . (4)

In this linear system the matrix L is the discrete Laplace operator. In order
to capture the local geometry of the mesh we use the geometric Laplacian,
e.g. [10, 23], which is more sensitive to the irregularities of the triangulation
in comparison to the uniform or graph Laplacian. During the processing
of an animation sequence, the differential operator matrix does not change.
Furthermore, since it is symmetric positive definite we can perform a sparse
Cholesky decomposition as preprocessing step and perform only back substi-
tution for each frame.

This enables us to compute novel poses of the target mesh at an interactive
rate of 2 fps for meshes of the order of 30 to 50 thousand triangles. For highly
detailed meshes, e.g 264K∆ for the female CyberwareTM model (Fig. 1), the
algorithm performs at 10 s per frame.
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(a) (b) (c) (d) (e)

Figure 3: A template model (a) and a high-resolution body scan (b) in their
respective reference poses. - Influence of the number of markers on the quality
of the deformation: the template in a pose obtained via motion capture (c).
While 22 triangle correspondences already suffice to transfer this pose in good
quality to the scan (d), 180 triangle correspondences reproduce even subtle
details (e).

4.2 Correspondence Placement

As our method does not require any skeleton retargetting or full mesh corre-
spondence, it is imperative that the choice of the sampling captures as much
as possible of the geometric deformation. Fig. 3d shows the target mesh
mimicking the pose of the template when only as few as 22 correspondences
are used. Even though the pose is not reproduced in full detail, the overall
pose is captured. This is why the knee is not bent in the same way as in the
template. In Fig. 3e though, with 180 correspondences, the pose is faithfully
reproduced, including the knee (taking into account differences in skeleton
dimensions).

For cylindrically shaped body parts we require the user to specify a single
correspondence triangle and we mark additional triangles automatically by
taking additional directions in the cross sectional plane and intersecting them
with the mesh. For geometrically more complex body parts, such as the lap
or the shoulders, correspondences are fully specified by the user. Note that
except from the positioning of the markers, the whole Confluent Motion
approach is fully automatic. The number of triangle correspondences used
in our animations ranges from 140 to 220, half of which is automatically
generated.

Furthermore, the placement of the markers directly affects the pose-dependent
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Figure 4: Influence of the markers’ placement on the deformation quality:
marking correspondence triangles (red dots) close to an (anatomical) joint
creates a sharp bend in the skin (left) while increasing the distance to the
joint enables smoother bending (right).

surface deformation of the target mesh. So the user does not have to tweak
any weights as in the commonly used skinning methods. The principle here
is simple: for having a sharp bend in the surface the correspondences should
be placed close to either side of the joint, Fig. 4 (left). Increasing the distance
of the markers from the joint allows for a softer bending, Fig. 4 (right).

4.3 Coping with Singularities

A limitation which is inherent to most systems based on rotation interpo-
lation is the ”candy-wrapper” collapse effect [21]. Our current approach is
not immune to this problem and may suffer from its effects as well. In the
following, we devise two simple techniques to tackle this problem.

In order to prevent the twisting collapse we need a simple way to predict
when it happens. It occurs when some of the correspondence triangles un-
dergo a rotation of 180 degrees. Conveniently, this can be easily detected by
inspecting the first component of the quaternion representation. A null or a
very small value indicates that such a situation is likely to occur. The first
solution to this problem is a simple workaround which basically consists of
changing the reference pose of the template and the scan model and using
an intermediate pose as a reference. To this end, a previous frame for the
template and the target can be used as the reference pose. Another alter-
native would be to create an intermediate pose for the template mesh and
deform the target into a similar pose. This intermediate pose can be used as
the new reference configuration.
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The second solution would be to construct a shortest path between two points
along which this problem occurs and interpolate the deformation along this
line using the spherical quaternion interpolation commonly known as SLERP.
This way, deformation can be interpolated to the triangles adjacent to the
path. These new triangles will be used as constraints for the harmonic inter-
polation, Eq. (2).

5 Confluent Marker-based Animation

By far the most authentic animation descriptions for moving virtual actors
are obtained by measuring motion parameters of real people. The most es-
tablished technique to achieve this purpose is marker-based optical motion
capture [6]. Here, the body of a moving individual is equipped with optical
markings at kinematically relevant body locations, e.g. around the joints.
The person now performs in front of multiple cameras that reconstruct and
track the 3D positions of the markings. From the 3D marker trajectories,
a kinematic skeleton model of the person is generated. The motion is con-
veniently parameterized as rotational and translational parameters of the
joints.

Marker-based tracking systems provide the animator with motion descrip-
tions of unequaled accuracy and naturalness. Even subtle details in motion
patterns are faithfully captured. Furthermore, the motion data comes in the
correct skeleton-based parameterization straight away, enabling the animator
to straightforwardly map them onto a virtual character.

The high quality of captured motion data, however, comes at the expense
of many inflexibilities in their application. Firstly, motion parameters can-
not easily be reused with virtual persons that differ in skeletal proportions
from the captured individual. To make this possible, computationally ex-
pensive motion retargetting algorithms have to be applied [14]. Secondly,
motion capture systems only deliver a description of human motion in terms
of interconnected rigid bodies. The non-rigid deformations of the skin and
the soft-tissue surrounding the bones have to be manually modeled, e.g. by
means of vertex skinning [18].

We now demonstrate that the Confluent Motion paradigm can be straight-
forwardly applied to animate human body scans with motion capture data.
Paradoxically, despite discarding the use of a kinematic animation skeleton
it allows us to generate high-quality animations and to generate convincing

11



(a) (b) (c)

Figure 5: The set of input markers (a) are used to generate an intermediate
biped model (b). By applying our deformation technique the acquired motion
is realistically transfered to the final human body scan (c).

surface deformations with just the same simple processing steps. By the
same token, the motion retargetting problem is implicitly solved.

The steps that have to be taken to animate a mesh confluently with the
input data (Fig. 5a) are very simple and can be summarized in three sen-
tences: First, using any standard animation software like 3D Studio MaxTM,
the motion capture skeleton is transformed into a surface model in which
the bones of the biped are represented as triangle meshes (Fig. 5b). Con-
sequently, in a manual step static per-triangle correspondences between the
triangulated biped and the scanned mesh are defined. Finally, our mesh
deformation approach realistically moves and deforms the scanned mesh to
accurately mimic the motion of the input model, and brings it to a correct
global position (Fig. 5c).

We have applied our method to confluently animate a male and a female
high-resolution mesh that have been generated with a Cyberware full-body
scanner and that the company kindly provides for public use. Input motion
capture data are taken from a database of motion files provided by Eyes,
Japan Co. Ltd. Fig. 1 shows several frames of an animation in which we
made the female model perform a soccer kick. The input is a motion capture
file comprising of 90 key body poses. The actress realistically blocks the
ball, kicks it and scores. Note that the animation nicely displays even subtle
details like the protrusion of the chest during blocking. The skin deformation
around the knees and the elbows is also authentically reproduced. Fig. 6
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Figure 6: Male model boxing, rendered with and without static surface tex-
tures. Note the realistic skin deformation of the animated scanned mesh.

shows the male model performing boxing punches. Note that despite the fact
that the input motions stem from persons with totally different anatomical
dimensions, very natural animations free of retargetting artefacts (such as
sliding feet) are generated. Our experiments confirm that Confluent Motion
is a highly flexible and simple approach to create high-quality animations
from arbitrary marker-based motion capture data.

6 Confluent Marker-less Animation

In the previous section we have demonstrated that our approach transforms
motion data captured with state-of-the art intrusive measurement technology
into high-quality animations. One major disadvantage of this type of input
data is the fact that the acquisition situation has to be completely optimized
for the sole purpose of motion estimation. In consequence, the person can
hardly perform in a general environment and it is also impossible to make the
video footage available to further processing, e.g. for the purpose of texture
reconstruction. In contrast to marker-based systems, marker-less tracking
methods allow for this [20]. Instead of inferring movement descriptions from
artificially placed markings, they estimate motion parameters from image
features in the raw video footage showing a moving person in an unmodified
scene.

Using a marker-less human motion capture system as front-end to our Con-
fluent Motion pipeline enables us create two intriguing applications, video-
driven animation and confluent 3D video.
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6.1 Video-driven Animation

For non-intrusively estimating animation parameters, we make use of the pas-
sive optical motion capture approach proposed in [8]. To this end, we record
a moving person with eight static video cameras that are roughly placed in
a circle around the center of the scene. From the frame-synchronized video
streams, the shape and the motion parameters of the human are estimated.
To achieve this purpose, a template model, Fig. 3a, comprising of a kinematic
skeleton and sixteen separate closed surface segments is fitted to each time
step of video by means of silhouette-matching. The output of the method
conveniently represents the captured motion as a sequence in which the tem-
plate model subsequently strikes the estimated body poses.

This output format can be directly used as input to our Confluent Motion
pipeline. The animator specifies triangle correspondences between the tem-
plate and the scanned mesh that shall be animated. Finally, our algorithm
makes the output mesh mimic the motion that we have captured in video.
Realistic surface deformations of the output mesh are implicitly generated.
Please note that the fact that the moving input template comprises of in-
dividual triangle mesh segments does by no means limit the applicability of
our method.

In order to demonstrate the performance of video-driven animation, we ani-
mate our female (264K triangle) and male (294K triangle) Cyberware scans
with two very different captured motion sequences. The first sequence con-
tains 156 frames and shows a female subject performing a capoeira move.
The second sequence is 330 frames long and shows a dancing male subject.
Fig. 7 shows a comparison between actual input video frames and two scans
striking similar poses. It illustrates that body poses recorded on video can be
faithfully transfered to 3D models of arbitrary human subjects. Differences
in body shape and skeletal proportions can be completely neglected. Our
results illustrate that the Confluent Motion pipeline provides animators with
a tool to conveniently transfer motion extracted from normal video streams
onto high-quality 3D models.

6.2 Confluent 3D Video

By means of video-driven animation, Sect. 6.1, we can also generate 3D
videos of moving characters. In the traditional model-based approach to
3D video a simplified body model is used to carry out a passive optical
motion estimation from multiple video streams [28, 8]. During rendering,
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Figure 7: Video-driven animation: Motion parameters are extracted from raw
video footage of human performances (top row). By this means, body poses of
a video-taped individual can easily be mapped to body scans of other human
subjects (second and third row). Note that skin deformations are naturally
modeled (middle column). Scans are faithfully animated regardless of the
differences in body shape and skeletal dimensions.

the same simplified shape template is displayed in the sequence of captured
body poses and textured from the input videos. Although these methods
deliver realistic free-viewpoint renditions of virtual actors, we expect that a
more accurate underlying geometry increases realism even further. Confluent
Motion enables us to decouple the model acquisition stage from the motion
estimation and the rendering stages. This way, we can use an animated
high-quality scan as the underlying geometry description.

To demonstrate the feasibility of this approach in practice, we have acquired
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Figure 8: Confluent Motion enables creation of 3D videos with high-quality
geometry models. Due to the accurate geometry the rendered appearance of
the actor (left subimages) nicely corresponds to his true appearance in the
real world (right subimages).

full-body surface scans of several individuals in our studio. To this end, we
merged several partial body scans performed with our MINOLTA VI-910
which is best suited for scanning small objects. Thus the quality of our scans
is far below the quality of scans acquired using full-body scanners. For each
scanned individual, we also recorded several motion sequences with multiple
synchronized video cameras. We use the method from Sect. 6.1 to animate
the scans from the captured motion data. During 3D video display, the
animated scan is projectively textured with the captured video frames.

Fig. 8 shows two free-viewpoint renditions of a dynamically textured ani-
mated scan in comparison to input images of the test subject. The free-
viewpoint renditions reflect the true appearance of the actor. Since we are
given a better surface geometry, texture blending artefacts are hardly ob-
served. Furthermore, we can even reproduce the true shape of the sweater
which would not have been possible with a moving template. Remaining
artefacts in the rendering can be clearly attributed to the non-optimal scan-
ning apparatus we used. We do not see this as a principal limitation of
our approach, as the results in Sect. 5 and Sect. 6.1 with Cyberware scans
demonstrate.

7 Results and Discussion

To demonstrate the potential of Confluent Motion, we conducted several ex-
periments with both marker-based and marker-less motion acquisition tech-
niques.
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Due to their high resolution, we used the Cyberware models provided with
their original surface colors in most of our experiments. In Fig. 1 and Fig. 6
the models faithfully reproduce the acquired performances of professional
athletes. Marker-less motion acquisition enables us to perform video-driven
animation. Both of our models in Fig. 7 authentically mimic the human
performances captured on video. This also allows for producing 3D video,
Fig. 8.

Our method satisfies the deformation constraints in a least-square sense,
while maintaining the smoothness and details of the original mesh which
are encoded in the differential operators. Thus, in order to enforce any con-
straint, it is imperative to increase the number of correspondences associated
with it. We can ensure stable feet placement simply by marking a sufficient
number of constraints on the feet. Due to different body proportions between
source and target mesh, achieving an exact match between source and tar-
get is impossible. However this is a general problem even for skeleton-based
retargetting methods.

The results confirm that our method is capable of delivering visually con-
vincing virtual character animation at a low interaction cost, but still at
interactive rates. The method is able to process large data sets in the order
of 200 to 300 K∆ in just seconds. For smaller sets of 30 to 50 K∆ the results
are generated at 2 frames per second. All the experiments were conducted
on a single 3.2GHz notebook.

We would also like to emphasize that our method can use arbitrary template
meshes, which can be arbitrarily structured. For the vision-based results
the fact that the template reflects the shape of the captured persons is a
requirement of the motion capture method [8] and not of our approach.

As for any novel technique our method still has some limitations. For extreme
deformation we note that there is generally some loss in volume due to the
nature of our interpolation. We believe that using higher order differential
operators or the volumetric approach proposed in [35] would reduce such
artefacts although this might decrease the current numerical performance.
We plan to investigate these ideas as a direction of future work.

We nonetheless devised a powerful framework for animating virtual human
characters. Since our method relies only on setting up and solving linear
systems, the implementation and the reproduction of our results are straight-
forward.
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8 Conclusion

Confluent Motion is a new animation framework aiming at simplifying the
traditional, not so straightforward acquisition-to-animation pipeline. The
only manual interaction required is the selection of a small number of tri-
angles to enforce the semantic correspondence between different models and
guide the animation process. The proposed method is thus easy and intu-
itive to use and does not require any training. By means of the same efficient
methodology Confluent Motion simultaneously solves the animation, the sur-
face deformation and the motion retargetting problem.

As a direction for future work, we would like to combine our technique with
an approach to learn per-time-step surface deformations from input video
footage. We also expect that outfitting our virtual characters with simulated
apparel would further increase the visual realism.
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