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Abstract

We present an interactive method for applying deformations to a surface mesh while preserving its global shape
and local properties. Two surface editing scenarios are discussed, which conceptually differ in the specification
of deformations: Either interpolation constraints are imposed explicitly, e.g., by dragging a subset of vertices, or,

deformation of a reference surface is mimicked.

The contribution of this paper is a novel approach for interpolation of local deformations over the manifold and for
efficiently establishing correspondence to a reference surface from only few pairs of markers. As a general tool for
both scenarios, a harmonic field is constructed to guide the interpolation of constraints and to find correspondence
required for deformation transfer. We show that our approach fits nicely in a unified mathematical framework,
where the same type of linear operator is applied in all phases, and how this approach can be used to create an

intuitive and interactive editing tool.

Y

Figure 1: A simple edit: The visualized harmonic field is
used as guidance for bending the cactus (left). Here, the field
is defined by one source (red) at the tip of the left arm and
one sink (blue) below the middle of the trunk. The result is
shown in the center image. Notice the different propagation
of the rotation compared to the edit on the right, where three
sources on all arms were chosen (without picture).

1. Introduction

One of the most governing representations of 3D objects
adopted by the Computer Graphics community is the 2-
manifold mesh. In recent years, many Digital Geometry Pro-
cessing algorithms operating on such mesh structures were
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developed. These methods generally deform the surface ge-
ometry and/or alter the mesh connectivity.

In many applications it is important to preserve the local
shape properties under global changes of the surface mesh.
The best-known example is probably surface editing: A user
selects and drags a subset of vertices to a new location in
space, and within a region of influence the shape should fol-
low this manipulation in a natural way. This means that the
overall shape follows the specified global deformation while
geometric details like, e.g., folds and wrinkles, are locally
deformed in a way that their characteristic appearance per-
sists. To be useful in practice, such editing tool must be in-
tuitive and provide interactive response.

In this paper, we describe interactive surface deformation
tools based on a linear framework. We identify the prop-
agation of local transformations over the surface as a key
technique, which is the first contribution of the paper: This
interpolation plays a vital role because it ensures that the
overall deformation looks natural, and that the required ge-
ometric detail is preserved. We establish smooth harmonic
scalar fields over the mesh to guide this process.

In addition, we consider a different surface editing sce-
nario: deformation transfer. Here, manipulation of a refer-
ence model is transfered and applied on a target model,
e.g., copying an animation sequence of an object to another
similar object. Instead of the explicit specification of com-
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plex deformation, the user provides only a small number of
corresponding markers on the two models. These are used
for establishing correspondence which essentially guides the
transfer of local deformations. As a result, the target object
mimics the global deformations of the reference object.

As basic technique, we apply harmonic fields, this time
for efficiently finding correspondence. We show that this
second contribution fits nicely in the overall framework, de-
spite the conceptual difference of this second surface defor-
mation scenario. Harmonic guidance provides a natural and
efficient tool for interactive and intuitive surface deforma-
tion: the required scalar fields provide inherent smoothness,
and they are constructed at virtually no extra cost. This is
because all required computational ingredients are available
in form of the linear reconstruction operator, necessary for
applying the deformations.

2. Related work

We are aware that the design and deformation of smooth
surfaces is a well-studied problem, and a multitude of ap-
proaches exist. In the following, we focus on deformation
preserving the local detail of a shape which is modified on a
global scale.

Multi-resolution techniques are well-known and probably
represent the most prominent approach to this problem, e.g.,
for surface modeling [ZSS97, KCVS98, GSS99, BK04].
Shape information is decomposed encoding geometric de-
tail relative to local frames [FB88], which are defined with
respect to a smooth base surface. After deformation of the
smooth base, the local frames are implicitly adapted (i.e.,
rotated) and detail is reintegrated into the reconstruction.

Alternative methods for various kinds of surface editing
rely on a relative representation [Ale03] which captures lo-
cal shape detail, namely Laplacian coordinates. However,
the inherent lack of rotation and scale invariance of the
linear operator requires local transformation of the differ-
ential coordinates. To account for this, local rotations are
estimated either from normal averaging over an initial re-
construction [LSC*04], or from embedding a simultaneous
least-squares optimization for linear approximants to rota-
tions and isotropic scales in the linear reconstruction opera-
tor [SLC*04].

Here, we note that both of the latter approaches, multi-
resolution methods and differential coordinates, transform
(rotate) their respective shape detail information such that
the reconstruction consistently preserves local detail while
the overall shape follows the global deformation. We can
interpret this transformation as updating the mappings of
local regions from the source to the target shape — hence,
as finding meaningful local deformations. Furthermore, we
mention the most recent [LSLCO5] proposing an alternative
family of rotation-invariant coordinates.

In fact, the recent work of [YZX*04] applies this notion

directly: Generalizing the concept of Poisson image edit-
ing [PGBO03], local deformations [Bar84] are specified and
then propagated over the surface mesh. The resulting defor-
mation field and additional conditions capturing smoothness
(including continuity) and local shape detail yield a linear
system whose solution defines the desired target shape.

So far, we discussed deformation for direct, interactive
surface editing. Deformation transfer [SP04] is a different
metaphor applied to mimic a reference deformation of one
triangulated shape on another one. Here, local deformations
of a target are sampled from the deformation of a reference
surface; given a corresponding deformation field, a linear
operator is used for reconstruction similar as for the above.
This process is steered by pairs of corresponding markers,
which are used to establish meaningful correspondence be-
tween the overall shapes using an iterated closest point algo-
rithm to deform the target into the initial reference geometry.

Sumner and Popovié¢ [SP04] point out that no bijective
mapping is necessary for establishing meaningful correspon-
dence, in fact, a many-to-many mapping is generally ob-
tained. While this seems sufficient for deformation trans-
fer, we remark that there exist techniques to construct con-
strained bijective maps between surfaces [KS04, SAPH04],
which provide a computationally more expensive alternative.

In addition to explicit shape manipulation, we men-
tion free form deformation methods [SP86, Coq90] which
achieve surface deformation by warping the surrounding 3-
space. This space-warp can possibly be defined using (local)
rotational constraints [LKG*03] or weight functions param-
eterized with respect to geodesic distances on the surface
[BKO3] for improving the propagation of constraints. In the
context of deformation transfer, as-rigid-as possible shape
interpolation [ACLOO] defines a piecewise linear space-warp
over a triangulated domain, corresponding to deformation of
the boundary.

Finally, we note that the advantageous properties of har-
monic fields have been used most recently for quadrilateral
remeshing [DKGO5].

3. Overview and contributions

We construct harmonic fields over a manifold and apply
them to guide local deformations for surface editing and to
establish correspondence for deformation transfer. We show
that both problems can be addressed by a unified mathemat-
ical framework, where the same linear operator is applied
in all stages: decomposition, propagation of local deforma-
tions, correspondence, and detail preserving shape recon-
struction.

The aim of this work is not to present a completely new
shape deformation technique. Instead, we propose our novel
interpolation as a natural ingredient to [YZX*04], which
provides a basic mesh editing framework. Here, the propa-
gation of local deformations is an essential stage for surface
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manipulation, as the linear reconstruction operator alone
cannot account for local rotations and scaling. To achieve
fair and efficient propagation, we propose harmonic fields,
which are smooth scalar functions in the manifold (Sec. 5).
‘We believe that this construction is natural, we show that it is
efficient. Also, we remark that it avoids an approximation of
— generally non-smooth — geodesic distance fields for (uni-
form, linear, or Gaussian) blending.

Deformation transfer requires an additional phase for
establishing correspondence between reference and target
shape. We propose to use harmonic fields in a novel ap-
proach: Inspired by the notion of barycentric coordinates,
we establish a family of — not necessarily independent — co-
ordinate functions over the manifold. The partition of unity
property of these coordinates provides a convex combina-
tion setting, which is used to match corresponding pairs of
triangles (Sec. 6).

Our method is very different from the iterative deforma-
tion process in [SP04]. Working entirely in the 2D manifold,
it does not depend on absolute coordinates which makes it
less sensitive to the initial alignment of the shapes, in gen-
eral a prerequisite for such iterated closest point algorithms.
Also, we are not applying a non-linear optimization process,
and in particular no user parameters are required for appro-
priate blending of an energy functional.

Our results confirm that we find good correspondence ef-
ficiently using relatively few markers, hence little user inter-
action. Again, we apply only additional back-substitution,
using the same linear operator as within all phases of the
whole deformation process.

Finally, we show as an additional contribution, that rea-
sonable transfer can be achieved differently and even more
efficiently by harmonic guided interpolation of deformations
at the markers (Sec. 7).

4. General differential setting

In the following sections, we will consider the steady-state
elliptic equation

Vi = f, (1)

with appropriate boundary conditions. If f = 0, this is well-
known as the (Dirichlet problem for the) Laplace equation.
For a non-null function f, this setting is called the Poisson
equation.

We consider piecewise linear functions over triangulated
manifolds, which can be scalar fields or multi-dimensional
vector fields. The discretization of this setting is well-known
and leads to a sparse linear system

Lu = b, )

where the matrix L represents the discrete Laplace-Beltrami
operator matrix (see, e.g., [PP93, MDSB02]).
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Equation (1) and the associated linear system (2) are
the basic tool applied throughout this work. The same sys-
tem will be solved for different right hand sides, in the
sense of either the Laplace equation or the Poisson equa-
tion. This means effectively, that the matrix L is decomposed
only once and subsequent solutions are obtained from back-
substitution alone.

5. Surface editing along harmonic fields

For intuitive surface editing, the user interacts only with a
small number of vertices, while the system automatically
places all other vertices within the selected region of interest
in a natural, detail preserving way. Hence, the editing tool
acts on a submesh of interest, whose vertices are classified
as fixed, edited, or free. The last class includes the major-
ity of vertices, whose new positions are to be determined.
Fixed vertices just stay in place and impose boundary con-
straints. Edited vertices are positioned by the user, and the
relocation of a region of such vertices defines a deformation.
Alternatively, a deformation can be directly prescribed for
the vertex, e.g., for twisting.

In this section, assume that the same deformation is de-
fined for all edited vertices, i.e., a single rigid mesh region is
repositioned, as is the case for the majority of manipulations.
In Sec. 7, we show how multiple local deformations can be
interpolated simultaneously.

Given this local deformation for the edited vertices, it
should be interpolated in a natural way over the whole (ROI)
manifold, in order to compute the global shape edit. We
achieve this by using harmonic fields for deformation guid-
ance.

A harmonic function s satisfies the Laplace equation
V2h = 0. For discrete scalar harmonic fields, we prescribe
the value 1 as boundary conditions for the edited vertices
acting as sources, and O for fixed vertices, which we de-
note sinks. Solving for Lh = 0, with respect to these bound-
ary conditions, the resulting harmonic functions smoothly
blend between 0 and 1 with no local extrema other than
sources and sinks. As before, L denotes the discrete Laplace-
Beltrami operator. Due to the chosen discretization the gradi-
ent flow of the fields respects the intrinsic surface geometry,
and it is independent of the particular tessellation of the sur-
face. Figure 1 (left) visualizes a harmonic field over a simple
surface mesh using a color table.

We decompose the local deformation into scaling and ro-
tation, the last represented by unit quaternions. At each ver-
tex, the value of the harmonic field is used to blend between
the source deformation with the identity fixed at sinks. The
result is a smooth deformation field over the manifold.

For the reconstruction of the globally edited surface from
this deformation field we follow the approach in [YZX*04]
based on solving the discrete Poisson equation (see also
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[PGBO03]). By sampling the deformation field at the barycen-
ters of the triangles, we obtain a piecewise constant field, i.e.,
deformations per triangle. Then each triangle is deformed
separately, which yields a deformed but fragmented, dis-
continuous mesh. For integration of the right hand side of
the Poisson equation, we compute the gradients for the de-
formed triangles. The divergence of this gradient field is
summed at vertices shared between triangles according to
the original mesh connectivity, yielding the right hand side
vector b. The solution of the associated Poisson equation
Lx = b provides the new vertex positions x.

Figure 2: Edit of the twirl object with sharp features.

We note that in contrast to [LSC*04, SLC*04] L repre-
sents the Laplacian matrix without any changes, in particular
all constraints are incorporated into the right hand side.

6. Deformation transfer guided by harmonic fields

The main goal of this section is to present an approach for
finding correspondence between two surfaces. This corre-
spondence is vital for deformation transfer, a tool for mim-
icking deformation of the reference on the target shape
[ACPO03, SP04]. Certainly, meaningful correspondence can
only be achieved if there exists a semantic correlation be-
tween shapes, like between several models of four-legged
animals.

To establish correspondence, the user marks few pairs of
corresponding points on the reference and target surfaces.
This interaction establishes the semantic correlation between
models and will guide the whole process. Hence, it is essen-
tial to carefully select markers such that good coverage of
the reference deformation is obtained. At the same time, the
number of markers should be kept low to minimize interac-
tion. So the usual procedure is a corrective loop, where the
user iteratively specifies new markers or to updates old ones,
and recomputes the deformation transfer until satisfying re-
sults are achieved. For this reason, efficiency for finding cor-
respondence and its quality directly account for user-friendly
interaction.

The correspondence maps each triangle of the target mesh
to one face of the reference. Note that we do not understand

correspondence as a bijective mapping and do not solve a
cross-parameterization problem [KS04, SAPHO04], which in
general applies constraint non-linear optimization.

In fact, for deformation transfer a non-bijective mapping
is sufficient as stated by Sumner and Popovié¢ [SP04] and
verified by our experiments (see also Figure 4). However, it
is vital for the mapping that it respects semantic correspon-
dence, and that it is independent of the tessellation or res-
olution of the model. Furthermore, it should be established
efficiently to allow quick response for fine tuning. Based on
such mapping, we decide on match or mismatch between tar-
get and reference triangles, for matches local deformations
are transferred.

We use harmonic fields to guide the correspondence. Mo-
tivated by the notion of shape functions for linear trianglesT,
we propose a generalization to manifold meshes. Given a
triangle, we can associate with it three functions with val-
ues 1 at one vertex and 0 at the two opposite vertices. These
shape functions define a set of basis functions over the tri-
angle, well-known as the barycentric coordinates, which can
be used for linear interpolation over the triangle. We aspire
to establish a generalization of such characterization to man-
ifold meshes, usable for deformation transfer.

Given a set of markers {mj,...,my}, we associate with it
a family of “shape functions” defined over a mesh. For each
marker m;, we define one harmonic field 4#; with Dirichlet
boundary conditions by setting its value to 1 at m; and to 0
at all other markers m;, i # j. This family of functions de-
fines an k-dimensional vector field over the entire manifold,
assigning each vertex a vector (hy, ..., hy).

This family is in general not independent and does not
necessarily form a basis. However, we remark that they sat-
isfy the partition of unity property Y <;<xhi = 1. This
property is of interest for our approach as it guarantees well-
behaved and bounded coordinate functions /;. We exploit
this fact for finding correspondence.

For two surface meshes with clear semantic correspon-
dence and a set of correspondence markers, we expect that
the harmonic fields will be similar and hence correspond.
Our experiments verify this observation. Correspondence
between triangles is then achieved by matching the vector
field of each target triangle (given by the barycentric av-
erage) to a triangle of the reference mesh which yields the
closest field value. Here, we define closeness in terms of the
2-norm of h. We remark that due to our experiments this can
be reduced to taking into account only the n maximal vec-
tor components for each value of i, where 3 < n < k. This
way we transfer local deformations to the target from match-
ing reference triangles. Analog to editing, the solution of the

T Formally, shape functions for triangular Lagrangian finite ele-
ments of degree 1.
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Figure 3: Left: The head of the cow is rotated and scaled. Right: Head and fin of the (top) turtle are bent.

Poisson equation provides the new target mesh, which mim-
ics the deformed reference shape.

7. Harmonic interpolation for editing and deformation
transfer

In this section, we show how to interpolate multiple defor-
mations simultaneously, which can be regarded as blending
between several sources, each of which propagates a differ-
ent deformation. We remark that this can be directly applied
to the editing setting of Sec. 5. Here, we discuss the inter-
polation in another context: we explore the possibility of
direct deformation transfer without establishing any corre-
spondence other than the markers. In other words, local de-
formations of the reference surface are sampled at the mark-
ers. On the target surface, they are used as constraints for
harmonic interpolation.

Figure 4: Illustration of a non-bijective correspondence
map: The cat as target surface is color coded. For deforma-
tion transfer from the lion, the cat triangles are mapped onto
the lion, shown in the bottom visualization using the same
color code. Indeed the lion is not fully covered, however, the
good match in colors indicates a meaningful transfer of de-
formations, i.e., the left front legs correspond, etc.
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Given correspondence between marked triangles on the
reference and target surface, we can compute the deforma-
tion on each of these triangles, using a virtual tetrahedron as
in [SP04]. The deformations are converted into unit quater-
nion form. The four components of the quaternion (plus a
scaling component if required, see Figure 3 (b)) are consid-
ered as separate scalar fields in the manifold. We consider
the propagation of the deformations over the surface as es-
tablishing harmonic functions, i.e., we find a solution to the
Laplace equation, which satisfies all given deformations in-
dependently in every component. Once the solution is ob-
tained, the Poisson scheme is used to apply the deformation.

Despite the simplicity of this approach, it works surpris-
ingly well, it is extremely efficient, and it provides a natu-
ral propagation at no extra cost. However, the approach is
limited by its nature: First, all local deformations which are
obtained from the interpolation are within the convex hull of
the given deformations at the markers. The scheme cannot
synthesize deformations in between, which have not been
captured. Second, the interpolation assumes a smooth varia-
tion of deformations relative to the surface domain. It cannot
predict and react on strong variations of the target surface,
which are not reflected in the reference. Hence, if the two
surfaces locally differ too much, the interpolated deforma-
tions may not be meaningful. Of course, both issues can be
addressed by placing additional markers, in particular near
geometric detail.

8. Results and discussion

Figures 1, 2, 3 5, and 6 show several edits of models with
varying complexity and shape detail. The linear framework
enables edits at interactive rates. The Laplacian matrices are
decomposed only once after a region of influence is selected,
the factors can be reused for efficient back-substitution for
reconstruction after every single change of the deformation.
The time for decomposition and initial solution when editing
the entire Happy Buddha model at a resolution 220K trian-
gles is in the order of few seconds on current hardware.

Surface deformation is a very broad topic, and we believe
there is no single solution to the variety of editing problems
anticipating the needs and desires of modelers and design-
ers. So obviously, the proposed methods within this work
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Figure 5: An exaggerated edit of the reference horse model.

are limited and target only some specific problems. While
the method is in general robust to triangle foldovers, there
are no guarantees on mesh self-contact and penetration.

Figure 7 shows the transfer of the lion poses to the cat,
correspondence was established using 68 markers for the
upper left pair of models. (The correspondence map is il-
lustrated in Figure 4.) The models are taken from [SP04],
but we reverse their transfer: the reference deformation se-
quence was given for the lion, in fact, we are using their out-
put of their algorithm as input. We consider this as a hard but
fair test for our correspondence computation, and the ideal
result would be to recover the original manually animated
cat sequence. The results confirm that our mapping is good.
Certainly, artifacts in the input reproduced but rarely ampli-
fied. The deformed cat gets close to the original sequence,
we observe most problems with the deformation of the tail
and inevitable surface self-intersections. We emphasize that
the correspondence was established only from the solution
of a linear system, in particular, no non-linear optimization
was applied.

Figure 8 shows a similar test: using 120 markers, the
deformation sequence is transferred back onto the original
horse model only by harmonic interpolation. For each pair
of images, the left one shows the manually animated model
(from [SP04]), while the right one shows the original horse
deformed according to the result of the interpolation. In an

ideal setting, the second one should reproduce the first one.
The results show, that this is nearly the case, and it confirms
the harmonic interpolation of local deformations in general.
Certainly, for the plain harmonic interpolation method more
markers are needed for achieving good results.

Comparing Figure 7 and 8 and the approaches of Sec. 6
and 7, respectively, we observe that for the first approach
approximately the same number of markers as for [SP04] is
sufficient while we require no additional user parameters and
only applications of the linear operator and simple searches
over the harmonic coordinates in contrast to non-linear min-
imization. However, this process is still not quite interactive.
Our second approach using harmonic interpolation requires
more markers in general. It eliminates matching and hence
greatly reduces computational cost, which are independent
of the number of markers. In brief, our two approach bal-
ance number of markers versus more efficiency and interac-
tiveness.

Discussing limitations, we would like to emphasize that
the matching relies heavily on the semantic similarity of the
models at hand. In fact the method would not yield convinc-
ing results for models with different semantics (e.g., very
short legs versus very long legs). The number of markers
used in our method is of the same order of magnitude as the
ones used in [SPO4]. We note that it is possible to establish
a matching with less markers especially when dealing with
very simple poses, however, the current number of markers
is reasonable given that poses of the cat and lion are rather
extreme.

Furthermore, a judicious placement of markers in order to
better capture deformations can always reduce the number
of needed markers. On the other hand for the harmonic in-
terpolation usually more markers are needed as the solution
tends to have a slight “rubbery” behavior especially around
the joints (see Fig. 8). This is in part due to the elliptic nature
of the interpolation, so more markers are needed around the
joints in order to maintain a good approximation of the the
deformations. However, in practical applications one might
prefer this interactive approach using more markers which
can be added and readjusted on the fly yielding immediate
response.

9. Conclusions

We presented a surface deformation framework for shape
editing and deformation transfer. As a central tool we ap-
ply harmonic fields to guide the deformations, i.e., to in-
terpolation of local deformations over the manifold and to
establish correspondence for deformation transfer. Our uni-
fied approach is elegant and natural: the same mathematical
building blocks, solving the discrete Laplace and Poisson
equations, are applied in all stages. Inherent smoothness is
provided, and non-linear minimization of energy function-
als is avoided. In fact, use of linear operators render the ap-
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Figure 6: The harmonic field on the Happy Buddha model, visualized left, guides the bending and twisting edit. This is the
largest mesh used with 220K triangles, two sinks at the feet and one source on the head were applied.

proach efficient, the same sparse linear system is solved mul-
tiple times per problem instance. Hence, only a single matrix
decomposition is required. Our results confirm effectiveness
and efficiency of the approach.

Harmonic fields offer a nice framework for surface editing
and they proved to yield promising results in surface resam-
pling [DKGOS5]. We see potential use for them in other areas
of computer graphics such as mesh segmentation and motion
planning.
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