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Abstract

This paper introduces a method for interactively editing planar curves subject to positional and rotational con-
straints. We regard editing as a static deformation problem but our treatment differs from standard finite element
methods in the sense that the interpolation is based on deformation modes rather than the classic shape functions. A
careful choice of these modes allows capturing the deformation behavior of the individual curve segments, and devis-
ing the underlying mathematical model from simple and tractable physical considerations. In order to correctly handle
arbitrary user input (e.g. dragging vertices in a fast and excessive manner), our approach operates in the nonlinear
regime. The arising geometric nonlinearities are addressed effectively through the modal representation without re-
quiring complicated fitting strategies. In this way, we circumvent commonly encountered locking and stability issues
while conveying a natural sense of flexibility of the shape at hand. Experiments on various editing scenarios including
closed and non-smooth curves demonstrate the robustness of the proposed approach.

1. Introduction

1.1. General problem
Curves are one of the most studied primitives in com-

puter graphics. Over the last decades, concepts from nu-
merical approximation, differential geometry, compu-
tational geometry, and mechanics, have contributed to
deepen understanding of curves and widen their range
of applications. A desirable property when model-
ing/editing curves is the ability to emulate the deforma-
tion behavior of natural objects (e.g. wood, cables),see
figure1. Such physical considerations have been present
in curve modeling since the early days. They are behind
several well established tools e.g. spline curves [1]. In
animation, several models for curve-like object simula-
tion have been proposed in the last few years spanning
the dynamics of hair, threads, ropes and cables.

In this paper, we regard a curve as a set of connected
segments and we are concerned with finding its static
equilibrium i.e. positions of the segments’ end points
when subjected to loading or rotation moments. We
identify the following properties as requirements for a
satisfactory editing experience;

• robustness to arbitrary user input

• robustness to curve nature (smooth/nonsmooth,
open/closed)

• handling of rotation and displacement constraints

• control over global and local effect of deformation

• no wiggling or oscillation during the interaction

• similarity to the deformation of familiar objects e.g
threads

Some of these requirements are fulfilled to varying
extents in existing works but we are not aware of a
method which guarantees full satisfaction of all of them.

Although there has been substantial work on curve
deformation in the spatial setting, the planar counter-
part did not receive as much attention. With a few ex-
ceptions, e.g. [2, 3], there are not many specialized vari-
ants for the planar setting. Essential differences between
both settings make tailoring the mathematical deforma-
tion model from the ground up in the planar configu-
ration more attractive than restricting a spatial formu-
lation to the plane. Planar rotations are fundamentally
different from spatial rotations as they are commutative
and can be parameterized by a single degree of free-
dom. This has even a deeper impact on equilibrium rela-
tions as planar moments are conservative whereas spa-
tial moments are not necessarily so (different rotation
paths would not necessarily lead to the same final con-
figuration). Therefore, developing a planar formulation
allows taking advantage of these fundamental proper-
ties and simplifies the numerical treatment to a great ex-
tents. In the spatial setting, intermediate formulations,
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e.g. quaternions, are needed for carrying out algebraic
operations and the interpretation of moments gets more
intricate. Such problems are still an active research area
in both engineering and mathematics [4].

1.2. Contribution
Our approach relies on the concept of natural defor-

mation modes. The general theory is outlined in the
context of computational mechanics in [5]. We apply
this concept to planar curve editing and derive the full
underlying mathematical model. By considering defor-
mation modes which span the degrees of freedom of a
curve segment (beam), we can relate displacements to
forces by mere visual inspection as illustrated later in
equation (1) and related figures (4, 5). This simplic-
ity is made possible by the assumption that local de-
formations of the curve segments remain small. To a
certain extent, our approach bears some similarity to the
work of [6] where a modular approach to deformation is
taken. Each deformation module is composed of a rest
shape, a gross deformation and fine wave deformation.
The main difference is that our construction is done at a
finer level (individual curve segment). This allows cov-
ering all possible deformation modes (of a segment) and
maintaining a close check on the physics. In this way,
the general formulation is independent of the adopted
bending theory and can easily accommodate the stan-
dard Euler-Bernoulli theory or the more complex Tim-
oshenko beam theory, see, e.g.,[7] for a description of
these theories.

When an object undergoes a large deformation, the
assumption that external forces take effect on the ini-
tial undeformed geometry is no longer valid. This as-
sumption is implicitly made in the linear deformation
setting discussed above. If used for large deformation,
the solution drifts away (e.g excessive shape dilation
as in figures (6,7)-top). In practice, forces need not be
large to lead to a nonlinear behavior. Take for instance
the buckling of a straw under compressive forces at its
ends. In this case, even minimal forces would have a
large impact on the geometry. It is therefore necessary
to address geometrically nonlinear aspects of deforma-
tion correctly and efficiently (sec.3.4) in order to allow a
satisfactory user interaction. We achieve this goal using
an iterative scheme where the symmetric tangent stiff-
ness is fully updated at each iteration. Special attention
is given to step control in order to drive convergence.

2. Related work

Many of the existing rod deformation approaches are
based on Elastica theory. This theory dates back to

Figure 1: Real deformation of a thread line (right) and a “twist’n flex”
ruler compared to the static editing of an initially straight curve.

work of Euler on the deflection of structures. A gen-
eralized treatment has been outlined in the work of the
Cosserat brothers [8]. In this formulation, a curve is
regarded as a uni-dimensional oriented medium com-
posed of curve segments. The cross-section of each seg-
ment endpoints is oriented by a local frame (two covari-
ant vectors and a director). A modern treatment of the
theory can be found in [9] which further explored ap-
plications of the theory to DNA looping. In computer
graphics, the strands model was introduced in [10] for
modeling the statics of a surgical wire. An enhanced
spring-mass model which takes advantage of quaternion
representation was proposed in [11] and demonstrated
for cable rooting. The work of [12] proposed an exten-
sive treatment of contact dynamics. Simulation of phe-
nomena such as knotting and dynamic looping (plec-
toneme formation) was investigated in [13] where par-
allel transport theory is used to carry out force computa-
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Figure 2: Editing of a sinusoidal curve (left) using moderate deforma-
tion (middle) and slightly larger deformation (right). The underlying
initial shape of the curve is preserved.

tion. All the above mentioned approaches operate in the
spatial setting and specialized variants for the planar set-
ting have been studied less. A notable exception is the
planar variant of super-helices [14]. Super-helices offer
several improvements over the original strands model
particularly in runtime. The planar version features
super-circles as a primitive for curve animation in [3].

In the latter approach however, the editing is limited
to smooth curves (where a geometric fitting is possible)
and neither closed contours nor sharp corners can be
handled. Furthermore it is required that the curve be
clamped at one end. The goal of the current work is to
present an approach that does not requires any special-
ized fitting primitives and can address the issues related
to the nature of the curve (smooth/nonsmooth) and mul-
tiple constraints.

In mesh editing, more methods favor a static ap-
proach to deformation, see e.g. the survey work [15].
Some of these methods can be adapted to curve defor-
mation as demonstrated in [2]. This two-step approach
does not explicitly address the nonlinear aspects of de-
formation and this leads to some undesirable effects
such as the severe shrinkage illustrated in figure (10-
top) (results generated using online demo [16] kindly
made available by the authors). Our approach addresses
such limitations efficiently as illustrated in figure (10-
bottom).

In the structural engineering community, key theoret-
ical ideas for modeling beam deformation can be found
in [17] and [18]. Finite elements models based on
these representations requires additional care to deal
with shear locking and may yield non-symmetric tan-
gent stiffness matrices during the iterative Newton based
solution, see e.g. [4]. This issue may have deep im-
pact on performance, ”in certain cases where the exact
tangent stiffness matrix is not symmetric, the extra it-
erations required by a symmetric approximation to the

Figure 3: Illustration of the robustness of our approach to multiple
loopings (top) and large rotations (bottom) where the user drags the
free end in circular manner.

tangent matrix use less computer time than solving the
nonsymmetric tangent matrix at each iteration” [19].

An alternative treatment is the so called co-rotational
approach (see [20] for a general introduction) which ad-
dresses deformations involving large rotations and small
proper body deformation (strain). Simplified variants of
this theory have been introduced for volumetric defor-
mation in computer graphics, see e.g. [21, 22]. In the
simplified co-rotational setting, considerable speedup
has been achieved for solid elements as the stiffness is
not recomputed but simply warped throughout the de-
formation. Further improvements with regards to sta-
bility and robustness have been presented in subsequent
work, e.g. [23]. Adopting the stiffness-warping idea
alone to our problem would not fully account for geo-
metric nonlinearities (e.g. buckling which is commonly
encountered in slender objects) and can lead to undesir-
able effects especially when deformations are too large.
Such effects are illustrated in figures (6-top), and ( 7-
left). In both examples the linear stiffness is co-rotated
and updated within an iterative Newton scheme.

Our work operates also in convected coordinates but
more emphasis is put on geometric nonlinearities and
their contribution towards the tangent stiffness which
drives the iterative Newton scheme towards static equi-
librium.

3. Planar deformation

As mentioned in the introduction, we take advantage
of the natural mode approach [5]. We are not aware
of any use of this concept to the planar curve setting,
therefore we propose a full derivation of the numerical
model. The key idea is to define a set of intuitive (natu-
ral) deformation modes.

The deformation of the individual segments of a
curve can be decomposed into a set rigid body motions
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which capture the evolution of the local frame attached
to the element with respect to a fixed coordinate sys-
tem, and a set of deformation shapes within the local
frame (Section 3.1). This separation offers many advan-
tages. First, the deformation within the local frame is
small in general and can be approximated using linear
elasticity (Sections 3.2 and 3.3). Second, the simplicity
of our model allows for capturing geometric nonlineari-
ties through simple but practical approximation (Section
3.4).

Although there is a similarity to standard finite el-
ements in the sense that we aim at establishing a re-
lation between loading and displacement, the current
derivation deviates from standard finite elements as we
do not rely on shape functions but rather on deforma-
tion modes. This yields concise representations see e.g
equation (5). Shape functions often reduce the problem
to numerical fitting, this often hides the physical nature
of the problem. Deformation modes on the other hand
bring forward this physical aspect into the heart of the
numerical modeling.

As we restrict ourselves to the planar setting, we cap-
italize on the vector nature of planar rotations which
ceases to hold in higher dimensions.

3.1. Deformation modes

In the following bold font will be used to denote vec-
tors and matrices. Scalars will use normal fonts.

Consider an initially straight segment of length ` in
the xy-plane. Let E be its elastic modulus, G its shear
modulus, A its cross-sectional area and I the inertia. In
all our experiments these parameters were resp. set to
1,1,3 and 1. The segment is completely defined by the
location of its endpoints. On each of the two nodes act
three forces, and these are (in a Cartesian frame attached
to midpoint of the segment) a force Fx in the x-direction,
a force Fy in the y-direction and a bending moment M
that leads to a rotation around the z-axis (perpendicular
to the plane). The element displacements arising there-
from are, accordingly, the displacements ux, uy, and a
rotation uθ.

We are concerned with establishing a relationship be-
tween the displacements of the nodes u and the force
f acting on them. u = (u1,u2)T , ui = (uix, uiy, θi)T

where i=1,2. The corresponding element forces that
work conjugately to these displacement are f = (f1, f2)T ,
fi = (Fix, Fiy,Mi)T .

In order to establish such a relation it is worthwhile
to consider a set of forces and displacements that spans
the range of the six degrees of freedom. The selection
of these forces and displacements could be arbitrarily,

it only has to represent linearly independent deforma-
tions. Conveniently, the deflection of an element can
be decomposed into a set of rigid form of movements
rO which correspond to rigid body motions and set of
proper body deformation (stretching and bending) rN .

Rigid body modes may be chosen as the translations
rO1 along the x-axis, rO2 along the y-axis, and the rota-
tion rO3 around the z-axis, see figure 4. These modes
are clearly independent and span the range of all possi-
ble rigid body motions.

Figure 4: Rigid body displacement of a planar beam

There remain three additional deformation modes to
be assigned. These may be chosen so as to capture
the deformation of the beam in its local frame. Ex-
tension along the central axis is uniquely defined and
can be then selected as the first deformation mode. The
remaining bending modes may be defined as symmet-
ric bending and anti-symmetric bending as illustrated in
figure (5). These natural deformation modes seem to be
the most convenient choice as bending is captured using
only two modes in contrast to standard finite element
representations, where generally four shape function are
needed [7].

The natural displacements depicted in figures (4)
and (5) can be related to the cartesian displacement in
the local frame through a transformation matrix which
is obtained by visual inspection.



u1x

u1y

u1θ
u2x

u2y

u2θ


=



1 0 0 −1/2 0 0
0 1 −`/2 0 0 0
0 0 1 0 1/2 1/2
1 0 0 1/2 0 0
0 1 `/2 0 0 0
0 0 1 0 −1/2 1/2





rO1
rO2
rO3
rN1
rN2
rN3


(1)

Rigid motions do not induce any stress in the curve
segment. As such, their conjugate forces and moments
do not contribute towards equilibrium. By inverting the
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Figure 5: Natural modes of the beam element. The extension forces
N, the symmetric bending moments Ms act in opposite directions, and
the anti-symmetric moments Ma.

matrix of equation 1 and restricting the relation only to
the natural deformation modes can write

rN =

−1 0 0 1 0 0
0 0 −1 0 0 1
0 2/` 1 0 −2/` 1

 u = A u (2)

By means of the contragredient principle, forces
which are conjugate to the natural displacement rN and
cartesian displacements u can be related by:

f = AT (N, Ms, Ma)T = AT fN . (3)

3.2. Virtual work

According to the principle of virtual work, a system
is in equilibrium if the internal work is equal to the ex-
ternal work for all choices of the virtual displacement
field [24]. For our case, this reads:

δfT
1 u1 + δfT

2 u2 +

l∫
0

δfT u dx =

l∫
0

(
δFx Fx

E A
+
δFy Fy

G A
+
δM M

E I
)dx;

(4)

where the load increment δf = (δ fx, δ fy, δm) represents
the per-unit-length external virtual loads, and δFx, δFy,
δM refer to the virtual internal forces.

By plugging the forces and displacements depicted
in figure 5 into the virtual work equations, see ap-
pendix Appendix A, we can arrange the resulting equa-

tions in matrix form as N
Ms

Ma

 =


E A
`

0 0
0 E I

`
0

0 0 3 E I
(1+Ψ)`


rN1
rN2
rN3

 (5)

This establishes the relation between the deforma-
tion modes and their corresponding displacements, and
could be written compactly as fN = KNrn, through the
natural stiffness KN .

To obtain the stiffness in the convected cartesian co-
ordinates we use equation 3 to carry out the coordinate
transformation

f = A KN AT u = K u (6)

3.3. Equilibrium relations
The derivation above was established in the local

frame convecting with the individual curve segments.
Now, turn to equilibrium relations in the global frame.
let ug = (ug1,ug2)T be the beam displacement in the
global fixed frame. The global forces acting on the
nodes are as fg = (fg1, fg2)T .

In the plane, the global frame and the convected
frame can be related by a rotation matrix Rθ

Rθ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ; (7)

where θ is the angle between the curve segment and the
horizontal line (global x-axis). For convenience let’s de-
note by R the rotation matrix that acts on the beam as a
whole

R =

(
Rθ

Rθ

)
(8)

in this way ug = R u.
In order to obtain the tangent stiffness, we can look at

the generalized force,

fg = R f = R A fN ; (9)

by reasoning on the incremental force dfg, we have

dfg = R A dfN︸   ︷︷   ︸ + R dA fN + dR A fN︸                   ︷︷                   ︸ (10)

By virtue of equations 2 and 3, the first term on the
right hand side can be written as A KN AT u. The re-
maining two terms can be expanded explicitly and then
rearranged in matrix form as Kc u, this can be done by
hand or using symbolic software. Kc accounts for the
variation of the transformation matrices R and A. This
yields

dfg = R(A KN AT +Kc)du. (11)
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Figure 6: Editing of a straight curve (making two knots and pulling to
the right). Leaving out the nonlinearity correction causes the individ-
ual curve segments to elongate unnecessarily (top). Including it yields
a more consistent deformation geometry (bottom). In both cases the
same Newton solver was used.

Keeping in mind that the displacement in the local frame
du transforms to global coordinates via RT , the last
equation could be written as

dfg = R K RT dug = Kg dug; (12)

This completes the description of the element stiffness
matrix.

3.4. Nonlinearity correction

So far, we did not explicitly address the nonlinear as-
pects of the deformation. These can be incorporated by
means of the elongation of the beam induced by the
symmetric and anti-symmetric bending modes. Tak-
ing an arclength parametrization of the corresponding
quadratic and cubic parabolas (see figure 5), ζ = 2

`
x, ζ

in [−1, 1]
duy = (1 − ζ2) `/8 rN2 (13)

duy = ζ (ζ2 − 1) `/8 rN3 (14)

and plugging each separately into the internal virtual
work increment (derived from equation (4))

l∫
0

(δu′′y E Idu′′y + δu′y N du′y)dx; (15)

reveals the nonlinear relation between the deformation
modes and their displacement counterparts.

Knonlinear = 2 N `

0 0 0
0 1/24 0
0 0 1/40

 (16)

This matrix may be added to KN to account for non-
linear effects of the deformations. Note that the nonlin-
earity is addressed in the local frame.

Figure 7: Impact of the nonlinear term on the deformation of a nons-
mooth curve (left). Without nonlinearity correction, features get dis-
torted in an unpredictable way and the shape gets elongated (middle).
On the other hand the nonlinearity correction (eq.16) preserves fea-
ture shapes and size (right). In both cases the same Newton solver
was used.

4. Numerical procedures and constraints

To solve the current nonlinear deformation problem,
iterative algorithms are unavoidable. The stiffness ma-
trix (equation (12)) and the force vector (equation (10))
can be used within a standard Newton-Raphson ap-
proach to carry out the numerical solution. In our
experiments this approach works well, but a slightly
better performance can be achieved when enhanced
with a path following approach [25]. Our experiments
with different speedup strategies such as the modified
Newton-Raphson or BFGS suggest that if the defor-
mations are moderate, good convergence rates can be
achieved. However when the user imposes excessively
large deformations the nonlinearities involved cannot be
addressed by these approximative techniques and accu-
rate second order computations are required. This moti-
vates the need for the additional nonlinear term in equa-
tion (16).

Positional constraints are enforced using Lagrange
multipliers to guarantee full satisfaction of user require-
ments and maintain the symmetry of the system stiff-
ness matrix. Pinned vertices can be completely inactive
when all their degrees of freedom are disabled. Alter-
natively they could be allowed to slide along the x-axis,
y-axis or allow rotations to pass through (see the accom-
panying video).

Although we operate in the nonlinear regime, interac-
tive rates are maintained for most of practical problems.
The reasons being: the topological nature of curves is
rather simple and yields highly sparse system matrices
in which the non zeros line up pretty much along the
diagonal. Furthermore, in our formulation, the tangent
stiffness is symmetric by construction, a property which
makes them solver friendly. In classical finite elements
approaches formulated in global coordinates this is not
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Figure 8: Editing of a closed nonsmooth shape. The approach main-
tains the original features

generally the case, see e.g. [26] for an overview and
discussion on this matter. This property cannot be em-
phasized enough as it deeply affect the convergence rate
which is crucial in an interactive system.

5. Results

We applied our technique to various editing situa-
tions. Figure 1 compares our approach to the deforma-
tion of real slender objects. Even though the deforma-
tions are large the techniques manages to reproduce the
natural behavior observed in the real setup.

Our approach can handle curves made of few thou-
sands of vertices while maintaining interactive rates. In
general, such lines are smooth enough for practical use.
If necessary, several strategies can be adopted to make
the edited curve a few folds denser and smoother. The
simplest is by generating a spline curve using uniform
subdivision. The idea is to attach a subdivision curve
S 0 to the coarse initial curve. The coarse curve being
used for carrying out the deformation calculations. Af-
ter each calculation the deformed coarse curve is subdi-
vided following the same scheme as for S 0. In this way,
a one to one correspondence to the initial subdivision
curve is maintained.

Figure 2 shows an example of a smooth open sinu-
soidal curve being edited using our approach. Figure 8
illustrates the case of a closed nonsmooth curve. In both
settings, the features are preserved. Our approach can
preserve shape details as long as the user does not de-
liberately alter it e.g. by pulling close vertices far apart.

Figure 3 demonstrates the robustness of our approach
to extremely the large rotations. In this scenario, a he-
licoidal shape and multiple loops are obtained by com-
bining rotational and displacement constraints.

Figure 9 shows an example of editing a slender im-
age. The image is deformed as a texture attached to a
grid mesh around the curve. When the curve deforms,

Figure 9: Typical editing results of our approach. Original paisley
texture image (bottom) and the results of deforming the centreline
curve of the image (top). Top images are slightly scaled for visibility.

the mesh position is updated and the texture follows.
The material properties described at the beginning of
section 3.1 may be adapted to the nature of object at
hand to enhance the user’s feel of its rigidity or flexibil-
ity.

The accompanying video shows different editing sce-
narios using our method. The user can impose con-
straints on any of the available degrees of freedom.
Curve manipulation is achieved by dragging free ver-
tices or imposing a moment to induce a rotation. The
editing sessions demonstrate the robustness and ease of
use of our technique. A comparison to the method of
[3] is also provided using demo code gracefully made
available by the authors of the original work. In the lat-
ter approach the editing is limited to pinning one end
of a smooth curve and dragging the free end. In our
experiments the curve tends to snap back when the de-
formation gets large.

Figure 10 opposes our approach to the one of [2].
We tried to reproduce the initial sketched curve shown
in black using an arc segment which we edited using our
method. The figure shows that we overcome the severe
shrinking suffered by their approach.

Figure 10: The method of [2] (top) compared to our approach (bot-
tom). The rest shape (left) is edited by fixing the marked vertex and
dragging the free end parallel to the horizontal line. Note that our
approach does not suffer from the severe shrinkage noticeable on top.

6. Conclusion

A method for editing curves and slender objects in
a physically consistent manner was presented. Typi-
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cal editing examples are substantiated in the text and
the accompanying media. The current implementation
is restricted to finding the static equilibrium of curves
and addresses issues related to large deformation ef-
fects. Nonlinear material behavior is not addressed in
the current implementation but could be an interesting
venue for future research. Further interesting issues re-
lating to contact, friction, and space curves will be also
considered in future work.
Acknowledgments and Credits: The author would
like thank Laurent Alonso, Bruno Lévy, Nicolas Ray,
Dmitry Sokolov and the anonymous reviewers for their
feedback on the paper. This work was funded by the
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Appendix A. Local mode relations

For the elongation force depicted in figure 5, we have
F1x = −N, u1x = −du/2, F2x=N and u2x = du/2, all
the remaining terms correspond to zeros. Substitution
into the virtual work equation (4) yields, rN1 = `

E A N;
Similarly, for the symmetric bending mode we have
rN2 = 1

2
`

E A Ms.
For the anti-symmetric bending, the moment is not

constant throughout the segment length and it can be in-
terpolated as M(x) = Ma (2x − `)/`. By virtue of equa-
tion 3 an additional shear force appears F1y = Ma/` and
F2y = −Ma/` when the bending moments are applied.
Plugging the bending moments and shear forces into the
virtual work equation reveals the relation between the
moment and the deformation angle rN3 = 1

2
`

E I (1+Ψ)Ms

where Ψ = 12 E I
G A `2 ; this derivation falls within the Tim-

oshenko beam theory as it account for shear deforma-
tion. Setting Ψ = 0 brings us into the Euler-Bernoulli
theory.
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