
EUROGRAPHICS 2023 / K. Myszkowski and M. Nießner
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 2

A Variational Loop Shrinking Analogy for Handle and Tunnel
Detection and Reeb Graph Construction on Surfaces

A. Weinrauch1,2 and D. Mlakar1 and H.P. Seidel2 and M. Steinberger1 and R. Zayer2

1Graz University of Technology, Institute of Computer Graphics and Vision, Austria
2Max Planck Institute for Informatics Saarland Informatics Campus, Germany

Figure 1: Computed handle and tunnel loops on the Dragon Tamer model.

Abstract
The humble loop shrinking property played a central role in the inception of modern topology but it has been eclipsed by more
abstract algebraic formalisms. This is particularly true in the context of detecting relevant non-contractible loops on surfaces
where elaborate homological and/or graph theoretical constructs are favored in algorithmic solutions. In this work, we devise
a variational analogy to the loop shrinking property and show that it yields a simple, intuitive, yet powerful solution allowing a
streamlined treatment of the problem of handle and tunnel loop detection. Our formalization tracks the evolution of a diffusion
front randomly initiated on a single location on the surface. Capitalizing on a diffuse interface representation combined with
a set of rules for concurrent front interactions, we develop a dynamic data structure for tracking the evolution on the surface
encoded as a sparse matrix which serves for performing both diffusion numerics and loop detection and acts as the workhorse
of our fully parallel implementation. The substantiated results suggest our approach outperforms state of the art and robustly
copes with highly detailed geometric models. As a byproduct, our approach can be used to construct Reeb graphs by diffusion
thus avoiding commonly encountered issues when using Morse functions.

CCS Concepts
• Computing methodologies → Shape analysis; Massively parallel algorithms;

1. Introduction

Probably one of the most inspiring achievements of topology is
the classification theorem for surfaces, which establishes equiva-
lence classes based on the Euler characteristic and orientability.
This development triggered a formidable effort focalized on the
so called Poincaré conjuncture aiming at extending classification
to higher dimensions and in particular to the 3−manifold setting

and captured the imagination of generations of mathematicians and
the general public alike. Loosely speaking, the classification theo-
rem for surfaces (2-manifolds) tells us that any orientable surface
is equivalent to a sphere with a certain number of "handles" sewn
onto it. In this respect, the surface can be constructed from a sphere
by topological surgery, which can be understood as a set of cutting,
stitching and deforming operations.

c© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0001-5194-3293
https://orcid.org/0000-0002-4500-0325
https://orcid.org/0000-0002-1343-8613
https://orcid.org/0000-0001-5977-8536
https://orcid.org/0000-0002-3452-6276

A. Weinrauch et al. / A Variational Loop Shrinking Analogy for Handle and Tunnel Detection and Reeb Graph Construction on Surfaces

Although a sound theoretical foundation of the subject matter
has been laid out in algebraic topology, see e.g. [Mun84], local-
ization of geometrically meaningful handles on surfaces remains a
highly challenging topic. Over the last decades, several algorithms
for detecting non-trivial loops on general graphs have been pro-
posed in computational geometry, see e.g. [Eri12] and the refer-
ences therein, but most of these results remain theoretical and have
not turned into efficient implementations. The topic of extracting
such topological features is not only relevant as a theoretical pur-
suit but has fundamental applications in geometry processing, cov-
ering tasks such as mesh parameterization, mesh repair, and feature
recognition, and spills beyond to fields such as biotechnology and
bioinformatics, see e.g. [BCG*13; VG10], therefore there is need
for efficient practical solutions.

Figure 2: Sensitivity of graph based methods such as [DFW13] to
the underlying triangulation. A small lateral coordinates perturba-
tion of the regular triangulation (top-left) induces a geometrically
suboptimal handle loop (top-right). Operating on the piecewise lin-
ear manifold, our method (bottom) is robust to such perturbations.

The pioneering efforts of Dey and coworkers [DLS07; DFW13]
formalized the notion of geometrically meaningful topological fea-
tures such as handle and tunnel loops and presented practical solu-
tions using intermediate structures relying on persistent homology
and Reeb graphs. Nonetheless, the cost of all intermediate con-
structs and their limitations impedes performance and intensifies
memory usage. While many of the above discussed methods trade
mesh geometry for a pure graph representation in order to provide
some theoretical guarantees, these guarantees do not translate into
robustness in practice. In fact, dependence on multiple intermedi-
ate constructs and optimizations leads to failures as can be inferred
from Table 2 in the results section. Furthermore, the obtained loops
are only as good as the underlying graph edges. As illustrated on the
single torus case in Figure 2, the method of [DFW13] produces ge-
ometrically meaningful loops when a regular triangulation aligned
with the principal curvature directions is used, however a simple
lateral perturbation of vertex coordinates leads to a non-optimal
handle loop, in the sense of not being aligned with the global prin-
cipal directions and not being necessarily shortest geometrically.
For applications such as robotics where affordance is key to inter-
action such loops are not of practical use. Therefore, there is need

for detection methods capable of working directly on the geometry
of the object at hand and not its graph abstraction.

Our goal is to provide a simple, intuitive, yet efficient strategy for
detection of handle and tunnel loops. To this end, we re-examine the
problem in the light of the humble loop shrinking property which
lies behind Poincaré’s intuition and we seek to develop a varia-
tional analog to it which would allow us to evolve freely on the
surface. In doing so, we avoid the difficulties encountered by exist-
ing methods in their efforts to marry homotopy classes, elaborate
graph constructs, and practical geometric requirements.

Consider a person walking on a given surface while holding a
sufficiently long thread from both ends, as illustrated in Figure 3.
Had the person been on a sphere, it would be possible to spool
it back. On the other hand, if the person is on a torus, it won’t
be possible to re-spool the thread because it passes through the 2-
dimensional hole of the torus.

Figure 3: Loop shrinking property illustrated on simple geometric
objects.

To capture the essence of the loop shrinking property, we con-
sider a diffusion process starting from an arbitrary location p on
the surface. If we are on the surface of a sphere, the advancing front
will grow steadily but eventually it will start shrinking and vanish
to one point similar to the thread losing hold. On the other hand,
if we are on the surface of a torus, the growing patch will initially
have a single boundary (Figure 4-left-top), and eventually, it will
meet itself as it folds like a cannoli yielding a tunnel like region
with two separate boundaries (Figure 4-left-middle). At this point,
we can only confirm that we are evolving on a tubular structure but
we cannot infer the existence of a handle. Only at the moment when
the two advancing fronts meet (Figure 4-left-bottom), then a handle
loop is detected. A tunnel loop can be obtained as a streamline by
tracing back from the handle loop along the diffusion gradient, see
Figure 5. Clearly here, the number of possible tunnel loops is large
and all of them will pass through the initial point p, so there is no
reason to expect them to exhibit some geometric optimality. This
can be remedied by performing a diffusion initiated from the ring
of the handle loop (Figure 4-left-bottom). Once the diffusion con-
verges we can trace multiple streamlines sampled along the handle
loop, thus obtaining a set of tunnel loops and we can then select the
shortest.

This idea extends naturally to higher genus settings. For instance,
let us consider the case of the double torus in Figure 4-right-top,
the diffusion from the point marked on the surface will behave ini-
tially in a similar manner to the torus case, but as the two fronts

c© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Weinrauch et al. / A Variational Loop Shrinking Analogy for Handle and Tunnel Detection and Reeb Graph Construction on Surfaces

merge (Figure 4-right-middle), the resulting single front will even-
tually split into two fronts (Figure 4-right-bottom) which would
meet each other again yielding the second handle loop.

Figure 4: Handle loop discovery through splitting and collision of
diffusion fronts on a simple torus (left) and a double torus (right).

Despite the inherent simplicity of the process described above,
special attention needs to be paid to front tracking, bookkeeping,
memory usage and performance in order to build a practical so-
lution suitable for large data sets and complex surface layouts. A
possible way forward is to use the level set method for carrying out
the front tracking of the diffusion on the surface, however the sharp
interface would require substantial bookkeeping and costly compu-
tations and checks on top of commonly known issues of the method
pertaining to the distance function evaluation and re-initialization.
Instead, we rely on the recent layered fields approach proposed as
an alternative model to the ubiquitous Voronoi diagrams for model-
ing natural tessellation modeling [ZMSS18]. We use a narrow band
to represent the advancing front to avoid discontinuities across the
front. We regard the propagation as field evolving on a layer on the
surface. The splitting of the interface corresponds to the splitting of
the field into two different fields evolving on different layers. For
this purpose, we develop a dynamic approach to layer creation and
layer collision, which allows us to keep track of all the handles and
tunnels on non-trivial higher genus surfaces.

We represent the different layers as rows of a sparse matrix
which both allows for carrying numerical diffusion computations
and the tracking of topological features. As our geometry process-
ing operations are channeled through linear algebra we take full
advantage of parallel linear algebra primitives. In particular, our
implementation operates fully on graphics hardware. A windfall of
our approach is the ability to generate a Reeb graph simply by per-
forming diffusion initiated at the detected handle loops. In this way,
the commonly encountered shortcomings of working with height
based Morse functions are avoided in the first place.

In summary, this work makes the following contributions:

• Novel variational abstraction for the loop shrinking property
• Succinct diffuse interface Model for identifying handle and tun-

nel loops and capturing front propagation and collision

• Dynamic sparse matrix representation for bookkeeping and pro-
cessing of multi-frontal branching and merging
• Fully parallel algorithmic realization on graphics hardware
• Simple and intuitive Skeletonization by Reeb graph calculation

and embedding

2. Previous work

The body of work on extracting topological primitives on surfaces
spans efforts across computational geometry and mesh process-
ing. Theoretical algorithms for extracting non-trivial loops on sur-
faces have been proposed, e.g. [EW05; Kut06; dVE06]. However,
there are no existing realizations of these theoretical efforts and no
guarantees that the resulting loops are geometrically meaningful
handles or tunnels. In the context of mesh simplification, several
heuristics for identifying small handles have been proposed, e.g.
[EV97; GW01]. The use of intermediate graphs for non-trivial loop
identification has been explored in terms of Reeb graphs in [SL01;
WHDS04] and in terms of medial axis in [ZJH07].

More closely related to our work are the efforts directly tar-
geting the localization of handle and tunnel loops. Dey and
coworkers addressed the problem by relying on persistent ho-
mology in [DLSC08], and then later on by making use of Reeb
graphs [DFW13]. In the former, the intermediate tetrahedral tes-
sellation required for carrying out homology computations poses
several challenges both to feasibility and performance and bloats
the problem size unnecessarily. Dropping persistent homology, in
the latter, in favor of Reeb graphs improved both performance and
scope, but computational cost and memory requirements remain
considerable.

A data structure based on tree-cotree decomposition which al-
lows for constructing generators of fundamental groups of surfaces
was proposed by Eppstein [Epp03]. Adjusting edge weights of the
tree-cotree decomposition based on principal curvature directions,
[DEG09] attempt to inject geometric meaning into those graph cy-
cles by to steering them to align with those directions. These meth-
ods are prone to produce redundant non-trivial cycles which require
post-processing. An iterative approach alternating between princi-
pal directions to find “good” cycles was proposed in [CJG18]. It
should be noted that curvature directions on general surfaces do
not necessarily match the targeted cycle directions as the surface
can be heavily decorated, see for instance, the dragons models in
Figure 15 and this limits the scope to overly smooth meshes.

Without loss of generality, the above discussed methods do not
operate directly on the 2D manifold but require one or multiple in-
termediate structures. Subsequently, performance and results qual-
ity depend on the quality of these underlying structures. For in-
stance, in [DFW13], the Reeb graph quality depends among other
thing on the choice of the initial direction as usually the associ-
ated Morse function is some height function. Likewise, [DEG09;
CJG18] depend on principal directions estimations which are gen-
erally local, sensitive to surface fluctuations and noise. More im-
portantly, the resulting algorithmic pipeline is not streamlined and
therefore pose further challenges to code vectorization in view of
the ubiquitous parallelism in modern hardware infrastructure.

c© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Weinrauch et al. / A Variational Loop Shrinking Analogy for Handle and Tunnel Detection and Reeb Graph Construction on Surfaces

3. Mathematical representation and data structure

General setting. A majority of existing methods operate in the
combinatorial manifold setting where the computation of shortest
homology generators is relatively simpler than the more geomet-
rically meaningful piecewise linear manifold. While this simplifi-
cation offers certain algorithmic guarantees and computational ad-
vantages, the results depend largely on the quality of the underlying
mesh edges. The challenges of working directly on the piecewise
linear manifold have long been recognized, for instance, [EW05]
discuss using level-sets for speeding up shortest path computa-
tions but acknowledge that “even the simpler problem of finding
the shortest non-separating cycle in a piecewise linear manifold ap-
pears to be open”.

Similar to [DFW13], our work seeks to find geometrically mean-
ingful generating pairs, meaningful is to be understood in the sense
of shortest loops. In our illustrations, e.g., Figure 4, as in most
common objects, the handle loop is way shorter than the tunnel
loop (think a mug handle for instance), so for the sake of presenta-
tion flow, we presume in the ensuing discussion that handle loops
are found before their tunnel counterparts. Of course, it is possible
to imagine scenarios where the opposite happens, e.g., deep screw
holes in the drill in Figure 15 but this does not affect the pair ex-
traction per se and the distinction between handle and tunnel loops
will be discussed aside.

Diffuse interface. While our approach is driven by diffusion,
a pure diffusion alone is not sufficient for tracking different ad-
vancing fronts and resolving front collisions. In fact, it would lead
simply to a smeared interface which would eventually end up as
a flat curve (merged fronts). This issue gets further amplified on
higher genus surfaces as multiple branchings yield multiple con-
current fronts. In order to resolve these issues and to avoid the nu-
merical problems commonly encountered with sharp interface such
as derivative discontinuities, we adopt a diffuse interface approach
where the advancing front is not a sharp line as in the level set
method but a narrow band. In this way the growing patch can be
defined by a function ϕi defined over the whole mesh and which
takes value 1 inside the patch and 0 outside the cell and is smoothly
varying on a narrow band where 0 < ϕi < 1. In this way, it is easy
to localize the narrow band by simple inspection of field values.
Furthermore, at any time, it is possible to extract a sharp boundary
as a level set of the narrow band.

Mathematical characterization. In our context, front splitting
due to branching, see e.g. Figure 4, leads to the creation of new sep-
arate regions and front collision requires colliding fronts to freeze
thus blocking each other. These behavior patterns are similar to the
natural tessellation model proposed in [ZMSS18; SMS*20] which
describes the evolution of the interface of multiple cells growing
simultaneously on a surface and yields Voronoi-like surface tessel-
lations.

With the notion of diffuse interface, we are contemplating a situ-
ation where multiple scalar functions, associated with each region,
are prescribed on the surface. As these different functions start in-
teracting with each other, e.g., when the fronts meet, tracking which
front belongs to which regions becomes very hard as we end up just
with one complicated scalar function defined on the surface. To re-
solve this issue, we rely on a layered field representation where

multiple scalar functions are defined over the surface as if they live
on different layers. In this way, we can allow interaction between
multiple fronts and at the same time we can access each scalar func-
tion by simply looking at the layer it lives on.

Within this setting, we can regard the diffusion of n individual
regions or cells as fields evolving on different layers and their in-
teractions are governed by a set of requirements and weighted en-
ergy terms which drive the overall cell interactions. To fix the ideas,
each region can be likened to the yolk part of an egg and its narrow-
band to the egg white. When multiple eggs are put together, the
whites block each other creating an interface and protecting the
yolks which remain whole. If an egg white is breached the dis-
tinguishability of narrow bands corresponding to the interface at
that location gets lost. This can be accounted for by imposing ex-
clusivity on the narrow bands associated with each region. As the
narrow bands represent the evolving front of the region, their gra-
dients are non-null, and hence the desired effect can be encoded as
the weighted gradients− 1

2 ai j∇ϕi ∇ϕ j. In a similar way, to prevent
the yolk of an egg from breaking into multiple parts, or merging
with other yolks, we encode the integrity in terms of the weighted
product wi jϕi ϕ j. A more physics-inclined interpretation is to look
at both terms as the kinetic and potential energy respectively and
the goal is to evolve the system while maintaining a low entropy.
Besides, by definition of our diffuse interface, we impose partition
of unity so that everywhere on the surface, field contributions ϕi
sum up to 1. For prescribing the behavior of narrow bands when
they enter into contact, we use a function g which will be described
shortly.

To account for the partition of unity constraint we introduce the
Lagrange multiplier λ. The ϕi’s can be treated as independent vari-
ables, and the arising Lagrangian then reads

∫
S

n

∑
i=1

n

∑
j=i+1

(wi jϕiϕ j−
ai j

2
∇ϕi∇ϕ j +g)+λ(

n

∑
i=1

ϕi−1) ds,

where the integral spans the surface S and the summation is over
the number of patches or regions n.

Following [ZMSS18], the minimization of the Lagrangian yields
the following time dependent equation which describes the evolu-
tion of the individual fields

ϕ̇i =−
n

∑
j=1

µ
n

(n

∑
k=1

[
(wik−w jk)ϕk +

1
2
(a2

ik−a2
jk)∇

2
ϕk)

]
+(

∂g
∂ϕi
− ∂g

∂ϕ j
)

)
. (1)

As observed in the above equation, We do not need to define g
explicitly, we only need to define the difference term (∂g

∂ϕi
− ∂g

∂ϕ j
).

The function g encodes the desired behavior when two boundary
bands meet each other. In the simple case, where only two bands
ϕi,ϕ j meet, we have by virtue of partition of unity, ϕ j = 1−ϕi. In
practice , we seek a function that produces a symmetric behavior in
the interval (0,1) and vanishes at 0 and 1 and does not change sign.

c© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Weinrauch et al. / A Variational Loop Shrinking Analogy for Handle and Tunnel Detection and Reeb Graph Construction on Surfaces

One such function is
√

ϕi(1−ϕi), in this way, we have

ϕ̇i = −
n

∑
j=1

µi j

n

(n

∑
k=1

[
(wik − w jk)ϕk +

1
2
(a2

ik − a2
jk)∇

2
ϕk

]

− ei j
√

ϕiϕ j

)
.

In the above equation, we recognize the pure diffusion term char-
acterized by the Laplacian which guarantees the smoothness of the
growing interface. The first term in the equation ensures a stable
and stationary interface and therefore balances the effect of the dif-
fusion term. The last term characterizes the driving force of the
interface between the ith and the jth patch, namely the behavior
chosen for g. The growth rate is controlled by the mobility term
µi j . The solution can then be carried by a simple explicit Euler
stepping scheme ϕi(t +∆t) = ϕi(t)+ ϕ̇i∆t. For a discussion on sta-
bility or more elaborate numerical schemes, the reader is referred
to [ZMSS18] or standard numerical methods textbooks. In all our
experiments, a constant time step was sufficient.

Data representation. The numerical modeling is carried out by
means of linear finite element approximations. Our experimental
results suggest there is no need for going to higher order approx-
imations. The layered fields abstraction lends itself to a compact
and efficient representation as a sparse matrix Φ where rows span
the fields ϕi and columns span the mesh vertices. This representa-
tion is convenient in the sense that we can precompute the Lapla-
cian matrix of the mesh and then at each time step the evaluation
of the Laplacian of the fields amounts to a sparse matrix-matrix
multiplication with Φ. The Laplacian of ϕi is just the ith row in the
resulting product. This formulation offers a clear advantage in view
of efficient parallel implementation. Furthermore, checking if two
patches share a boundary amounts to checking their corresponding
rows in Φ for common nonzeros along the columns (vertices). Par-
tition of unity across the layers can be conveniently enforced by
normalizing the columns of the field matrix Φ after each iteration.

At initialization, field values for vertices within a given cell are
set to 1, and an additional base layer is created and set to 1 ev-
erywhere. This layer serves two purposes, it triggers the overall
evolution and serves as an inexpensive means for handling inter-
face interactions implicitly. In fact, as two or more fronts enter into
contact, the field values on the base layer at the corresponding loca-
tions reflect the contact as they do not flag 1’s anymore. By virtue
of this observation, we set the mobility term µi j and boundary in-
teraction term ei j to 0 except when either indices refer to the base
layer. In that case, they are set to 1

4 and 1
30 resp. The coefficients

of the gradient energy ai, j are set to 1
25 , and those for the penalty

term wi, j to ai, j
5 when i 6= j, and to 0 otherwise. We did not see

any need for changing the parameter values proposed in [ZMSS18;
SMS*20] despite the problem settings being completely different.

4. Variational Loop Shrinking

From the outline given in the introduction, our method can be re-
garded as a sequence of three distinct passes. The initial pass reg-
isters the number of handle and tunnel pairs and gives an initial

Figure 5: In the initial pass (top), the field interface (rim of the or-
ange region) splits into two different components (top-left), both of
which propagate till they reach each other (top-middle) yielding an
initial handle estimate (top-right). In the second pass (middle), a
diffusion initiated leftwards of the handle (middle-left) progresses
till it reaches the opposite side of the handle (middle-middle). A
streamline tracing against the diffusion gradient field yields the
tunnel loop (middle-right). Similarly, in the third pass (bottom), a
diffusion from the tunnel loop upwards (bottom-left) reaches the op-
posite side of the tunnel (bottom-middle) yielding a refined handle
loop (bottom-right).

estimate for each handle loop. In the second pass, tunnel loops cor-
responding to each initial handle are created. In the third pass, the
tunnel loop is used to generate a refined handle loop. Figure 5 de-
picts these three stages on the simple case of a torus. Throughout
these passes, we mitigate the effect of the random seeding of the
diffusion process in the initial pass and we improve the quality of
the reported loops. If the focus is only on producing topologically
correct loops without any geometric considerations, the final pass
may be skipped and the estimates from the initial pass can be used
as the handle loops.

4.1. Initial Pass

The diffusion process is initialized from a random point on the sur-
face and carried out by a simple explicit Euler stepping scheme. Af-
ter each update, we check the state of the boundary of each advanc-
ing front (by inspecting nonzeros along the columns of Φ which
is much cheaper than computing isolines at each iteration. Isolines
are computed only when a collision or branching is detected). We
encounter a branching on the surface when there is more than one
boundary loop (narrow band), see Figures 5-top-left and 6-left. In
this case, each boundary loop is transferred to a new layer (row) in
Φ. As Φ is modeled as a compressed sparse row (CSR) matrix, the
transfer means we only have to adjust the column index for each
vertex part of a specific connected component. The parent layer
which gave birth to these new fronts can then be ignored in future

c© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Weinrauch et al. / A Variational Loop Shrinking Analogy for Handle and Tunnel Detection and Reeb Graph Construction on Surfaces

Figure 6: Handle detection on the double torus during the initial
pass. The creation of new colors, reflect dynamic changes to multi-
layered field representation Φ such as layer creation or merging as
the advancing fronts split or merge.

iterations, because it has no space left to diffuse further, see e.g.
Figure 4 for an illustration. Please note that for visualizations pur-
poses, the transfer is visualized in a vertex-only coloring and not
interpolated, therefore it looks jagged as in Figures, 5 and 6; the
transfer itself is fully integrated in the smooth diffusion process.

A handle is detected when multiple advancing fronts meet each
other, Figures 5-top-middle and 6-second-left. This can be inferred
from Φ by inspecting which advancing fronts (rows) contribute
field values to the same vertices (columns). Therefore, if a vertex
has contributions from two or more layers, those layers should be
merged. The number of handles detected is the number of layers
involved minus one, e.g., two layers yield one handle. Inversely, to
the scattering of multiple advancing fronts to multiple layers, now
we gather all involved layers into a single new layer. This time the
energy values per vertex of all involved layers are accumulated into
the energy value of the last involved layer, clearing all the others.
Afterwards, the row index of the accumulation result is shifted to
represent the new layer. This process avoids any expensive sparsity
pattern changes and is fast to apply. The handle loops are formed by
the involved advancing fronts before they are merged into a single
layer, see Figures 5-top-right, 6-right, and 7. Since the number of
handles equals the number of involved advancing fronts minus one,
one boundary loop has to be ignored. Figure 5-top-right visualizes
the formed handle loop as a green line. In all of our experiments,
the longest boundary loop is ignored, as this choice seems to give
the best visual results. In general, this is not required and our fi-
nal results are independent of this choice, as long as one layer is
ignored.

4.2. Tunnel loop pass

It is possible to generate tunnel loops by back-tracing streamlines
against the diffusion gradient in the initial pass. However, this turns
out to be a poor algorithmic choice because the diffusion emanates
from a single seed. In order to produce well-behaved tunnel loops
we take a more judicious approach. We set up a diffusion process
to start on one side of the handle loop whereas the other acts as a
border preventing propagation in the opposite side. In this way, the
diffusion process can get from one side of the handle loop to the

other, see Figure 5-middle. If the other side is reached, we can gen-
erate streamline back to the start points. The first point reached on
the other side is used as the start point for the streamline trace. Due
to the assumption that the diffusion happens at a constant speed on
the surface, this will give us an approximation of the shortest path
from one side to the other. This naive approach, however, would
not work for complex geometries, as there may be multiple tunnel
candidates for a single handle estimate, as illustrated in Figure 7.
Whenever a handle estimate lies on a tubular connection between
two holes, as highlighted by the red rectangle, there will be two
possibilities for a tunnel, one on each side. Without further restrict-
ing the diffusion process we cannot guarantee which tunnel will be
found by the Streamlines. Consequently, the same tunnel may be
reported by different handle estimates, if they lie along the same
tunnel. To fix this problem, we introduce an implicit ordering of
the reported tunnels. The second diffusion process for each handle
estimate is restricted to the surface area which was already covered
at the time the handle estimate was detected. This ensures that a
handle estimate finds the shortest tunnel fully covered by the initial
diffusion process and no tunnel is reported more than once. Multi-
frontal branching and collisions, as the ones observed in Figure 7,
are therefore handled correctly and efficiently without the need for
elaborate data structures or intermediate representations thanks to
the already discussed sparse matrix field representation.

4.3. Handle refinement pass

There is a priori no reason for the handle loop generated in the
initial pass to be optimally placed or shaped, for instance, perfectly
round at the thinnest section of handle. Often, it will be skewed or

Figure 7: Visualization of the progression of the initial pass on the
ball mesh. Initiated at a single seed (top-left), the front expands and
branches out yielding multiple fronts which conquer half of the ball
(bottom-right).

c© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Weinrauch et al. / A Variational Loop Shrinking Analogy for Handle and Tunnel Detection and Reeb Graph Construction on Surfaces

Figure 8: Examples for improved handle loops (bottom) compared
to the estimates obtained from the initial pass (top). Estimates are
rendered as green tubes, tunnel loops are in blue and improved
handle loops as orange.

twisted, see examples in Figure 8-top. By applying the same steps
as to generate the tunnel loop we can generate a refined handle loop.
We start from one side of the tunnel loop and after we reach the
other side, we trace backwards starting from the first point reached,
see Figure 5-bottom. This time the diffusion process is restricted
by the corresponding tunnel loop only. The streamline tracing will
yield an improved, ideally placed handle loop, see Figure 8-bottom.
Please note that although our approach is purely heuristic, it is well
justified and avoids any costly numerical optimization.

Figure 9: Detected handle and tunnel loops for different initializa-
tions. The purple point shows the starting location of the diffusion.

4.4. Robustness to initial seed placement

As discussed above, the multiple pass strategy makes our approach
robust to the initial random seed placement. This is confirmed em-
pirically in our test results. A typical scenario is shown in Figure 9.
Starting from different locations on the surface of the mother and
child model, our method generates nearly identical results. Please
note that the handle loops, in orange, slightly differ. This is ex-
pected because there are multiple location having similar cross-

section thickness alongside the arms. Therefore, there are multiple
candidate locations which produce meaningful handle loop.

Figure 10: Distinguishing handle and tunnel loops by offsetting
them along their corresponding surface normals (right). As illus-
trated, tunnel loops tend to shrink whereas handle loops expand.

4.5. Distinguishing handle and tunnel loops

So far, we have assumed that loop handles are found first. This is
not always the case, especially for deep holes as for instance in the
drill in Figure 15. Our algorithmic flow does not depend on this
distinction, therefore, we can do identification at the end. Keep-
ing to the simplicity of our overall approach, basic checks such
as slightly offsetting the final loop along its corresponding surface
normals and checking the changes in its chord length, as illustrated
in Figure 10, is sufficient for making the distinction in our exten-
sive test cases. Tunnel loops favor hyperbolic parts and will tend
to shrink after offsetting whereas handle loops tend to expand. It
might be possible to engineer scenarios where this basic distinction
fails however we believe this is a reasonable price for a trade-off
between fast practical solution and costly bulletproof robustness.

5. Performance Considerations

While it would have been easier to implement our current algorith-
mic pipeline in a multithreaded fashion, our aim it to harness the
tight memory requirement on the GPU and fine grained parallelism
pertaining to modern graphics hardware. The two major challenges
we faced are finding ways to parallelize the tracking of advancing
fronts as well as keeping the communication and synchronization
between CPU and GPU at a minimum.

In all times, our method needs to keep an eye on the evolution
of the advancing fronts. The extraction of the advancing fronts on a
layer requires a list of all triangles which are part of the advancing
fronts. A triangle is part of the advancing front, if one or two ver-
tices of that triangle have an energy level above a given threshold
and below 1. By applying this condition while iterating over all tri-
angles in parallel, we atomically build the list of all triangles part
of the advancing front.

Identifying the number of separate advancing fronts, while an
easy serial exercise is not straightforward in parallel. It can be mod-
eled as a connected component labeling problem on an unstructured

c© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Weinrauch et al. / A Variational Loop Shrinking Analogy for Handle and Tunnel Detection and Reeb Graph Construction on Surfaces

Figure 11: Reeb graph creation on the genus-0 Deer model. Please
note how the branching structure of the deer horns is well captured.

Figure 12: Geometrically embedded Reeb graphs on a selection of
relevant test cases.

grid where triangles represent nodes and their connectivity from
the edges between nodes. Connected component labeling is a chal-
lenging task to implement efficiently on the GPU. The nature of
this problem requires scattered memory accesses as well as mul-
tiple passes, which both are problematic in terms of performance
on the GPU. Our method uses the algorithm described in the work
by Soman et al. [SKN10], which minimizes the communication be-
tween CPU and GPU and reduces the scattered write operations to
improve performance.

The time stepping during the initial pass is dominated by the
Laplacian evaluation which is encoded as a sparse matrix matrix
multiplication (SpGEMM) which can take advantage of readily ex-
isting numerical kernels.

The tunnel loop pass (subsection 4.2) and handle refinement pass
(subsection 4.3) only differ in the initialization of the diffusion pro-
cess and are discussed as one. Compared to the diffusion process
during the initial pass, in these passes, the diffusion process has ex-
actly one single layer. No scattering or merging is performed. This
allows us to replace the sparse resizable system matrix Φ by a dense
vector containing the energy value of each vertex. The base layer,
required by the diffusion process, is implicitly modeled as one mi-
nus the energy value of the first layer. Furthermore, the SpGEMM
during the diffusion update is replaced by a simple sparse matrix
vector multiplication (SpMV). This performance optimization of
the diffusion process is particularly important because each tunnel
and handle loop requires a separate diffusion process. To fully uti-
lize the GPU, multiple gradient and handle refinement passes run
in parallel.

Figure 13: Comparison of Skeletons produced by our method (left)
and from the Topology Toolkit [TFL*18](right).

6. Reeb Graph Extraction

While our objective has been the detection of handle tunnel and
loops, looking at Figure 6 it is clear that the diffusion process some-
what capture all the branching in the surface. While the topological
information encoded by a function defined on a given surface by
tracking the connected components of it level sets is generally cap-
tured in the notion of Reeb graphs.

Interest into Reeb graphs in computer graphics goes back to the
work of [SKK91] which opened the door for a steady research
effort on the topic. This includes performance oriented solutions,
e.g. [PSBM07], mainstream implementations such as the on avail-
able from within the Topology Toolkit [TFL*18], improvements to
the algorithmic complexity, eg. [DN09], and extensions and gener-
alizations e.g. [BFS00].

In this digression, our goal is not produce a state-of-the-art Reeb
graph algorithm but to show the versatility of our approach, in the
sense, that by the same token we get the relevant handle and tun-
nel loops and meaningful skeleton by geometric embedding of the
Reeb graph associated with our diffusion on the surface.

The critical events forming the Reeb graph, namely splitting,
merging and vanishing of connected components (fronts), are al-
ready detected in our initial pass for handle and tunnel detection.
The embedding of those events are obtained by simply taking the
mean of the narrow band at the time those events occurred. Addi-
tionally, the mean of each advancing front is captured every few
iterations to get points between critical events. This process is vi-
sualized in Figure 11 where the sampled points from the boundary
and the critical events are shown as white spheres.

Just using the diffusion initialized at a random point as described
in the subsection 4.1 would naturally yield a topologically correct
graph as shown in Figure 11. However, the embedding especially
around critical points will have jumps because the mean of the front
jumps when a front splits or two or more merge together. For exam-
ple at the nose of the deer or at the front legs, where the embedding
even intersects with the surface. To improve the embedding in those
regions we apply a similar principle as for the handle refinement
pass from subsection 4.3. For each front (children) created by split-
ting a front (parent) we start a separate diffusion process which can
only populate backwards compared the initial diffusion process.
This ensures that the front will propagate towards the parent and
along the jump in the embedding. During this pass we insert sam-
pled points similar to before in between the connection of the child
and the parent to improve the quality of those regions. The diffu-

c© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Weinrauch et al. / A Variational Loop Shrinking Analogy for Handle and Tunnel Detection and Reeb Graph Construction on Surfaces

Figure 14: Side by side comparison between results of [DFW13]
(left) and our approach (right) on the Key [Art21] and Mother with
Child meshes.

sion is stopped when a vertex from the parent front is reached. The
same process is applied for fronts (children) which were merged
into a single one (parent). Typical results of our approach after the
refinement are shown in Figure 12 and Figure 13. Figure 13 shows
that our results are comparable to skeletons produced by existing
state of the art, however, an objective comparison is difficult due to
the different nature of the algorithms.

An estimate of the performance can be inferred by comparing the
cost of our method from table 2 to one of the top performing meth-
ods [PSBM07] since it is the method used in the Reeb graph step
in [DFW13] or [BR21] for a state-of-the-art Reeb graph skeleton
embedding method.

7. Results

All our experiment were carried on an Intel(R) Core(TM) i7-7700
with 32 GB system memory and an NVIDIA RTX 2080ti 11 GB.
As initialization point for the initial diffusion process we used the
first vertex of the mesh.

Figure 15 shows a collection of non-trivial test case meshes fea-
turing: large loops as in the Pegasus model and the dancing chil-
dren, object with thin features such as the key and the chairs and the
mechanical parts. In all these cases, our approach detects the han-
dles and tunnels correctly. The handles and tunnels in the dragon
models are heavily decorated with ornaments. The reported tunnel
loops correctly avoid following the ornaments which face inwards
compared to the tunnel loop. Following those ornaments would in-
crease the length of the loop. The handle loops are located at the
smallest parts despite the ornaments. The Napoleon mesh [Art21]
features very large tunnels, e.g. the tunnel covering the stone plate,
two legs and the body of the horse, and also very tiny ones, e.g. at
the top part of the foot rest or at the reins. The drill model hash very

Ours [DFW13]

Mesh Total (#threads) Total

MotherWithChild(28k, 4) 92(1) 18 (4) 76
Botijo(82k, 5) 108(1) 108 (5) 193
Casting(93k, 9) 114(1) 134 (9) 210
Happy Buddha(98k, 8) 97(1) 112 (8) 189
Ball(184k, 120) 152(1) 458 (10) 2135
Metal Key(390k, 10) 210(1) 552 (10) 810
Wooden Chair(400k, 7) 214(1) 472 (7) 921
Dragon Phoenix(750k, 11) 340(1) 1062 (10) 1540
Grayloc(921k, 5) 366(1) 1155 (5) 0
V745 Sco Nova(923k, 184) 502(1) 1402 (10) DNF
Metal Table(950k, 198) 336(1) 882 (10) 16891
Dancing children(1.4M, 8) 462(1) 612 (8) 4992
Drill(1.5m, 13) 496(1) 1844 (13) 4142
Dragon Tamer(2M, 335) 636(1) 1410 (10) >32562
Dragon Ball(2.4M, 5) 728(1) 1452 (5) 4557
Napoleon(6.5M, 25) 1844(1) 7744 (10) >15000
Statue(10M, 3) 496(1) 1844 (13) 4142

Table 1: Memory consumption in megabytes for various test mod-
els. For our method peak GPU memory usage is reported with
and without running the handle and tunnel passes in parallel. For
[DFW13] peak CPU memory consumption is reported.

small tunnels combined with large handles for the screw holes. All
tunnels and handles are reported correctly, because our method is
not based on any presumptions on the length of handle or tunnel
loops. Note that not all screw holes feature a tunnel in the mesh,
since it is a 3D scan.

Table 2 compares the runtime of our method with the state-of-
the-art approach [DFW13]. The results show that our method scales
significantly better with larger meshes and higher genus. Our ex-
periments included five meshes with a high genus: Ball, Metal Ta-
ble [Art21], V745 Sco Nova and Dragon Tamer [Art21]. The results
of these meshes are visualized in Figure 15 and Figure 1. In these
cases our method outperformed the other method by over an or-
der of magnitude. Grayloc, V745 Sco Nova, Napoleon and Dragon
Tamer, which has the highest genus of all tested meshes, did not
complete with their method. The metal table required multiple runs
until their method completed without an error, we report only the
runtime of the successful run.

The number of pairs detected by both methods is the same. As
it is cumbersome to match the pairs of both methods automatically
for comparison, we compare the total length of all loops. The length
ratio in Table 2 suggests that our method yields shorter loops in
general. Visual comparison of reported loops between our method
in Figure 15 and [DFW13] in Figure 14 confirm that especially han-
dle loops reported by our method follow the area with the smallest
arc length around the handle more smoothly, i.e. at the base of the
Mother with Child mesh.

Table 1 contains the memory consumptions obtained during our
experiments. We report peak GPU memory consumption with and
without running handle and tunnel refinement passes in parallel
kernels on the GPU. Except for very small meshes, our method

c© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Weinrauch et al. / A Variational Loop Shrinking Analogy for Handle and Tunnel Detection and Reeb Graph Construction on Surfaces

Figure 15: Typical results of our approach on multiple data sets: From top left, Pegasus, Dancing Children, Chair, Grayloc, Thai Statue,
Dragon Phoenix, Dragon Ball, Metal Key, Casting, Botijo Jar, the Napoleon model (with zoomed views), the Drill model (double-sided view)
and very high genus test cases, Ball, Metal Table, and a model of the double star system V745 Sco Nova (courtesy of NASA).

uses less memory even when multiple handle and tunnel refinement
passes run in parallel.

The memory consumption does not directly scale by the number
of parallel runs because some read only information, such as the
mesh, can be shared between these passes. Our initial tests showed
that running more than 10 passes in parallel did not improve the
performance further. This is probably caused by driver overhead
scheduling the parallel kernel runs on the GPU.

While more elaborate numerical schemes can be used with our
method, our experiments suggest that the standard time stepping
strategy adopted herein is sufficient in practice. In fact, the method
is generally robust to time step perturbation. For instance, scaling
the time step by one order of magnitude, yields the same number
of loops. Computing the Hausdorff distance between each corre-

sponding pair of loops suggest only negligible variations. Typi-
cal values for worst pair difference in terms of Hausdorff distance
RMS(%) are 0.006 for the Mother with Child model 0.050 for the
Dragon Ball model, 0.010 for the Drill model, and 0.012 for the
Pegasus.

The performance of [DFW13] depends largely on the fast Reeb
graph computations of [PSBM07] which in turn uses “free” height
functions (coordinates) as Morse functions. Certainly, other func-
tions can be used, the “streaming meshes” format has been used in
the latter but then the cost of the underlying Fiedler vector compu-
tation should be factored in. Similarly, when geodesic or harmonic
functions, e.g., [HSKK01] are used, their cost will impede perfor-
mance. Therefore, the comparisons we are providing are represen-
tative.

c© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Weinrauch et al. / A Variational Loop Shrinking Analogy for Handle and Tunnel Detection and Reeb Graph Construction on Surfaces

Ours [DFW13] Length ratio

Mesh(#faces, Genus) Total Initial P. Handles/Tunnels Total Reeb graph Map/Link Edge annot. Shorten. ours/[DFW13]

MotherWithChild(28K,4) 0.42 0.29 0.12 0.52 0.05 0.05 0.02 0.40 0.988
Botijo(82K,5) 1.78 0.65 1.23 1.81 0.21 0.17 0.11 1.32 0.960
Casting(93K,9) 1.31 0.70 0.60 3.10 0.40 0.10 0.16 2.44 0.999
Happy Buddha(98K,8) 1.13 0.61 0.52 2.04 0.24 0.10 0.15 1.55 0.988
Ball (184K, 120) 17.65 13.01 3.13 401.77 0.28 34.76 3.16 363.57 0.918
Metal Key(390k,10) 10.48 6.87 3.61 36.52 10.35 9.52 0.52 16.13 0.984
Wooden Chair(400K,7) 7.49 4.45 3.05 31.21 2.77 18.55 0.43 9.46 0.982
Dragon Phoenix (750K, 11) 12.89 8.75 4.14 100.83 9.77 50.66 1.73 38.67 0.942
Grayloc (921k, 5) 22.25 14.23 8.01 DNF
V745 Sco Nova (923K, 184) 273.99 104.21 168.66 DNF
Metal Table(950K, 198) 151.33 92.31 57.34 3,732.92 4.49 35.74 16.68 3,676.01 0.954
Dancing children(1.3M,8) 20.57 13.29 7.14 102.54 38.26 7.60 3.16 53.52 0.989
Drill (1.5m, 13) 18.77 13.92 4.85 90.32 13.52 1.14 2.74 72.92 0.846
Dragon Tamer(2M, 335) 429.57 254.93 172.53 >20,000.00 16.47 885.50 249.81 Crash
Dragon Ball (2.4M, 5) 37.29 21.88 15.41 91.70 38.14 1.28 2.84 49.44 0.975
Napoleon (6.5M, 25) 705.34 376.50 328.87 >2,970.16 2730.67 239.49 Crash
Statue (10M, 3) 167.71 152.18 15.53 491.69 253.45 19.12 7.91 211.21 0.976

Table 2: Runtime comparison for various test models. Timings are measured in seconds. The length ratio compares the total handle and
tunnel loops length of our method against [DFW13].

Figure 16: The Happy Buddha model (left) and a zoom-in on the
area marked by the arrow showing the effect of a tiny handle
spanned by only three triangles on the output of our variational
method.

7.1. Limitations and discussion.

Our approach operates on the piecewise linear manifold setting,
and cannot offer the same algorithmic guarantees of well and long-
established combinatorial approaches. However, our method relies
on first principles in topology embodied in the loop shrinking prop-
erty and therefore inherits the same theoretical guarantees. Our
method builds on the ability to conduct standard numerical simula-
tions on surface meshes and is hence bound by fairly well-known
requirements on methods such as the finite element method. We
do not see this as a limitation but rather a motivation for explor-
ing common grounds between combinatorial and variational ap-
proaches, especially that ample empirical evidence shows that our
method produces the same number of pairs as [Dey2013].

There can be scenarios where tiny and coarsely meshed handles
can affect the quality of our results or even escape the width of
our advancing front. The only test case where we encountered such
a scenario is depicted in Figure 16. Although the handle is only
spanned by three triangles, our method still captures it but the loop
is clearly suboptimal. Although this does not respect the smooth-
ness assumptions of the linear manifold required in our variational
setting, it can be addressed by adaptive refinement along the front.

8. Conclusion

We have re-abstracted the shrinking loop property as a continu-
ous growth process steered by diffusion. The diffusion field was
modeled using diffuse interface and the dynamics of the advanc-
ing fronts were captured by assuming a multilayered field repre-
sentation where the creation and merging of layers are respectively
steered by front splitting and collision. Our approach is simple and
versatile allowing the detection of handle and tunnel loops as well
as the creation of Reeb graphs. Furthermore, the time stepping na-
ture of our approach allows for a close control of the whole process
by simple adjustment of the field and regions of diffusion. We fore-
see that this control will help extend our approach to other applica-
tion such topological surgery, mesh segmentation, and rigging. We
hope that adopting our methodology will help break the deadlock
in performance and bring new machinery to help to understanding
and harnessing geometric problems. The variational nature of our
approach allows future improvements by means of improved nu-
merical schemes such as adaptive mesh refinement along the front.

References
[Art21] ARTEC3D. 3D Scans, Content Hub, Metal Table, Napoleon, Cop-

per key, Dragon and phoenix statuette, Statue Dragonfly tamer. 2021.

c© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Weinrauch et al. / A Variational Loop Shrinking Analogy for Handle and Tunnel Detection and Reeb Graph Construction on Surfaces

URL: http://https://www.artec3d.com/3d- models
(visited on 09/30/2021) 9.

[BCG*13] BREZOVSKY, JAN, CHOVANCOVA, EVA, GORA, ARTUR, et al.
“Software tools for identification, visualization and analysis of protein
tunnels and channels”. Biotechnology advances 31.1 (2013), 38–49 2.

[BFS00] BIASOTTI, SILVIA, FALCIDIENO, BIANCA, and SPAGNUOLO,
MICHELA. “Extended Reeb Graphs for Surface Understanding and De-
scription”. Discrete Geometry for Computer Imagery. Ed. by BORGE-
FORS, GUNILLA, NYSTRÖM, INGELA, and di BAJA, GABRIELLA SAN-
NITI. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, 185–197.
ISBN: 978-3-540-44438-1 8.

[BR21] BÆRENTZEN, ANDREAS and ROTENBERG, EVA. “Skeletoniza-
tion via Local Separators”. ACM Trans. Graph. 40.5 (Sept. 2021). ISSN:
0730-0301. DOI: 10.1145/3459233. URL: https://doi.org/
10.1145/3459233 9.

[CJG18] CHEN, JIA, JESTER, JAMES, and GOPI, M. “Fast Computation
of Tunnels in Corneal Collagen Structure”. Proceedings of Computer
Graphics International 2018. CGI 2018. Bintan, Island, Indonesia: Asso-
ciation for Computing Machinery, 2018, 57–65. ISBN: 9781450364010.
DOI: 10.1145/3208159.3208175. URL: https://doi.org/
10.1145/3208159.3208175 3.

[DEG09] DIAZ-GUTIERREZ, P., EPPSTEIN, D., and GOPI, M. “Curvature
Aware Fundamental Cycles”. Computer Graphics Forum (2009). ISSN:
1467-8659. DOI: 10.1111/j.1467-8659.2009.01580.x 3.

[DFW13] DEY, TAMAL K., FAN, FENGTAO, and WANG, YUSU. “An Effi-
cient Computation of Handle and Tunnel Loops via Reeb Graphs”. ACM
Trans. Graph. 32.4 (July 2013). ISSN: 0730-0301. DOI: 10.1145/
2461912 . 2462017. URL: https : / / doi . org / 10 . 1145 /
2461912.2462017 2–4, 9–11.

[DLS07] DEY, TAMAL K., LI, KUIYU, and SUN, JIAN. “On Comput-
ing Handle and Tunnel Loops”. Proceedings of the 2007 International
Conference on Cyberworlds. CW ’07. USA: IEEE Computer Society,
2007, 357–366. ISBN: 0769530052 2.

[DLSC08] DEY, TAMAL K., LI, KUIYU, SUN, JIAN, and COHEN-
STEINER, DAVID. “Computing Geometry-Aware Handle and Tunnel
Loops in 3D Models”. ACM Trans. Graph. 27.3 (Aug. 2008), 1–9. ISSN:
0730-0301. DOI: 10.1145/1360612.1360644. URL: https:
//doi.org/10.1145/1360612.1360644 3.

[DN09] DORAISWAMY, HARISH and NATARAJAN, VIJAY. “Efficient Al-
gorithms for Computing Reeb Graphs”. Comput. Geom. Theory Appl.
42.6–7 (Aug. 2009), 606–616. ISSN: 0925-7721. DOI: 10.1016/j.
comgeo.2008.12.003. URL: https://doi.org/10.1016/
j.comgeo.2008.12.003 8.

[dVE06] De VERDIÈRE, ÉRIC COLIN and ERICKSON, JEFF. “Tightening
Non-Simple Paths and Cycles on Surfaces”. Proceedings of the Seven-
teenth Annual ACM-SIAM Symposium on Discrete Algorithm. SODA
’06. Miami, Florida: Society for Industrial and Applied Mathematics,
2006, 192–201. ISBN: 0898716055 3.

[Epp03] EPPSTEIN, DAVID. “Dynamic Generators of Topologically Em-
bedded Graphs”. Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA ’03. Baltimore, Maryland:
Society for Industrial and Applied Mathematics, 2003, 599–608. ISBN:
0898715385 3.

[Eri12] ERICKSON, JEFF. “Combinatorial optimization of cycles and
bases”. Advances in Applied and Computational Topology 70
(2012), 195–228 2.

[EV97] EL-SANA, JIHAD and VARSHNEY, AMITABH. “Controlled Sim-
plification of Genus for Polygonal Models”. Proceedings of the 8th Con-
ference on Visualization ’97. VIS ’97. Phoenix, Arizona, USA: IEEE
Computer Society Press, 1997, 403–ff. ISBN: 1581130112 3.

[EW05] ERICKSON, JEFF and WHITTLESEY, KIM. “Greedy Optimal Ho-
motopy and Homology Generators”. Proceedings of the Sixteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms. SODA ’05. Van-
couver, British Columbia: Society for Industrial and Applied Mathemat-
ics, 2005, 1038–1046. ISBN: 0898715857 3, 4.

[GW01] GUSKOV, IGOR and WOOD, ZOË J. “Topological Noise Re-
moval”. Proceedings of Graphics Interface 2001. GI ’01. Ottawa, On-
tario, Canada: Canadian Information Processing Society, 2001, 19–26.
ISBN: 0968880800 3.

[HSKK01] HILAGA, MASAKI, SHINAGAWA, YOSHIHISA, KOMURA,
TAKU, and KUNII, TOSIYASU. “Topology matching for fully automatic
similarity estimation of 3D shapes”. Jan. 2001, 203–212. DOI: 10 .
1145/383259.383282 10.

[Kut06] KUTZ, MARTIN. “Computing Shortest Non-Trivial Cycles on Ori-
entable Surfaces of Bounded Genus in Almost Linear Time”. Proceed-
ings of the Twenty-Second Annual Symposium on Computational Ge-
ometry. SCG ’06. Sedona, Arizona, USA: Association for Comput-
ing Machinery, 2006, 430–438. ISBN: 1595933409. DOI: 10.1145/
1137856 . 1137919. URL: https : / / doi . org / 10 . 1145 /
1137856.1137919 3.

[Mun84] MUNKRES, J.R. Elements Of Algebraic Topology. Advanced
book classics. Perseus Publishing, 1984. ISBN: 9780201054873 2.

[PSBM07] PASCUCCI, VALERIO, SCORZELLI, GIORGIO, BREMER,
PEER-TIMO, and MASCARENHAS, AJITH. “Robust On-line Computa-
tion of Reeb Graphs: Simplicity and Speed”. ACM SIGGRAPH 2007
Papers. SIGGRAPH ’07. San Diego, California: ACM, 2007. DOI: 10.
1145/1275808.1276449. URL: http://doi.acm.org/10.
1145/1275808.1276449 8–10.

[SKK91] SHINAGAWA, Y., KUNII, T. L., and KERGOSIEN, Y. L. “Surface
coding based on Morse theory”. IEEE Computer Graphics and Applica-
tions 11.5 (Sept. 1991), 66–78. ISSN: 1558-1756. DOI: 10.1109/38.
90568 8.

[SKN10] SOMAN, JYOTHISH, KOTHAPALLI, KISHORE, and
NARAYANAN, P J. “Some GPU Algorithms For Graph Connected
Components and Spanning Tree”. Parallel Processing Letters 20.04
(2010), 325–339. DOI: 10 . 1142 / S0129626410000272. eprint:
https://doi.org/10.1142/S0129626410000272. URL:
https://doi.org/10.1142/S0129626410000272 8.

[SL01] SHATTUCK, D. W. and LEAHY, R. M. “Automated graph-based
analysis and correction of cortical volume topology”. IEEE Transactions
on Medical Imaging 20.11 (2001), 1167–1177. DOI: 10.1109/42.
963819 3.

[SMS*20] STADLBAUER, P., MLAKAR, D., SEIDEL, H.-P., et al. “Inter-
active Modeling of Cellular Structures on Surfaces with Application to
Additive Manufacturing”. Computer Graphics Forum 39.2 (2020), 277–
289. DOI: https://doi.org/10.1111/cgf.13929. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/
cgf.13929. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1111/cgf.13929 4, 5.

[TFL*18] TIERNY, JULIEN, FAVELIER, GUILLAUME, LEVINE, JOSHUA
A., et al. “The Topology ToolKit”. IEEE Transactions on Visualization
and Computer Graphics 24.1 (2018), 832–842. DOI: 10.1109/TVCG.
2017.2743938 8.

[VG10] VOSS, NEIL R and GERSTEIN, MARK. “3V: cavity, channel
and cleft volume calculator and extractor”. Nucleic acids research
38.suppl_2 (2010), W555–W562 2.

[WHDS04] WOOD, ZOË, HOPPE, HUGUES, DESBRUN, MATHIEU, and
SCHRÖDER, PETER. “Removing Excess Topology from Isosurfaces”.
ACM Trans. Graph. 23.2 (Apr. 2004), 190–208. ISSN: 0730-0301. DOI:
10.1145/990002.990007. URL: https://doi.org/10.
1145/990002.990007 3.

[ZJH07] ZHOU, QIAN-YI, JU, TAO, and HU, SHI-MIN. “Topology Repair
of Solid Models Using Skeletons”. IEEE Transactions on Visualization
and Computer Graphics 13.4 (July 2007), 675–685. ISSN: 1077-2626.
DOI: 10.1109/TVCG.2007.1015. URL: https://doi.org/
10.1109/TVCG.2007.1015 3.

[ZMSS18] ZAYER, RHALEB, MLAKAR, DANIEL, STEINBERGER,
MARKUS, and SEIDEL, HANS-PETER. “Layered Fields for Natural
Tessellations on Surfaces”. ACM Trans. Graph. 37.6 (Dec. 2018).
ISSN: 0730-0301. DOI: 10 . 1145 / 3272127 . 3275072. URL:
https://doi.org/10.1145/3272127.3275072 3–5.

c© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

http://https://www.artec3d.com/3d-models
https://doi.org/10.1145/3459233
https://doi.org/10.1145/3459233
https://doi.org/10.1145/3459233
https://doi.org/10.1145/3208159.3208175
https://doi.org/10.1145/3208159.3208175
https://doi.org/10.1145/3208159.3208175
https://doi.org/10.1111/j.1467-8659.2009.01580.x
https://doi.org/10.1145/2461912.2462017
https://doi.org/10.1145/2461912.2462017
https://doi.org/10.1145/2461912.2462017
https://doi.org/10.1145/2461912.2462017
https://doi.org/10.1145/1360612.1360644
https://doi.org/10.1145/1360612.1360644
https://doi.org/10.1145/1360612.1360644
https://doi.org/10.1016/j.comgeo.2008.12.003
https://doi.org/10.1016/j.comgeo.2008.12.003
https://doi.org/10.1016/j.comgeo.2008.12.003
https://doi.org/10.1016/j.comgeo.2008.12.003
https://doi.org/10.1145/383259.383282
https://doi.org/10.1145/383259.383282
https://doi.org/10.1145/1137856.1137919
https://doi.org/10.1145/1137856.1137919
https://doi.org/10.1145/1137856.1137919
https://doi.org/10.1145/1137856.1137919
https://doi.org/10.1145/1275808.1276449
https://doi.org/10.1145/1275808.1276449
http://doi.acm.org/10.1145/1275808.1276449
http://doi.acm.org/10.1145/1275808.1276449
https://doi.org/10.1109/38.90568
https://doi.org/10.1109/38.90568
https://doi.org/10.1142/S0129626410000272
https://doi.org/10.1142/S0129626410000272
https://doi.org/10.1142/S0129626410000272
https://doi.org/10.1109/42.963819
https://doi.org/10.1109/42.963819
https://doi.org/https://doi.org/10.1111/cgf.13929
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13929
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13929
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13929
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13929
https://doi.org/10.1109/TVCG.2017.2743938
https://doi.org/10.1109/TVCG.2017.2743938
https://doi.org/10.1145/990002.990007
https://doi.org/10.1145/990002.990007
https://doi.org/10.1145/990002.990007
https://doi.org/10.1109/TVCG.2007.1015
https://doi.org/10.1109/TVCG.2007.1015
https://doi.org/10.1109/TVCG.2007.1015
https://doi.org/10.1145/3272127.3275072
https://doi.org/10.1145/3272127.3275072

