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1 Introduction

Surface parameterization is a fundamental problem in computer graphics.
Intuitively, we can think of it as the flattening of a surface to a valid planar
configuration, i.e. one without foldovers or self-intersections. More formally,
consider a surface that is homeomorphic to a disk. Then the goal is to find
a bijective mapping from a parameter domain to the surface, that fulfills
certain quality constraints. For a triangulated surface this is a piecewise linear
mapping between the original and an isomorphic planar mesh.

The importance of the problem makes surface parameterization a very
active field of research. Numerous approaches have been proposed so far, in-
spired by results from different areas of research. Tutte [21] starts from graph
theory and uses barycentric maps for embedding a planar graph. Floater’s
shape-preserving weights [6] improve the conformality of the mapping while
still guaranteeing bijectivity. Eck et al. [5] use discrete harmonic maps to
minimize angular distortion. Sander et al. [17] introduce a stretch metric to
reduce the distortion induced by the parameterization. All the above methods
require a predefined convex boundary in the parameter domain. Hormann and
Greiner construct a most-isometric parameterization [12] by minimizing a non-
linear deformation functional without need to fix the boundary. Desbrun et
al. [3] and Levy et al. [13] achieve quasi-conformal mappings with an evolving
boundary by solving linear systems based on Cauchy-Riemann equation and
harmonic energy minimization respectively. Other recent approaches apply
multi-dimensional scaling [22] or an iterative algorithm that locally flattens
the triangulation until a prescribed distortion bound is reached [20].

While quasi-conformal parameterizations such as [3, 5, 11, 13, 16] propose
several schemes to minimize angular distortion, it seems natural to formulate
the problem in terms of interior angles of the flat mesh. This leads to the An-

gle Based Flattening(ABF) method introduced by Sheffer and de Sturler [18].
The ABF algorithm constructs such a parameterization by minimizing a func-
tional that punishes the angular distortion of the planar mesh w.r.t. the an-
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gles of the original mesh. A set of linear and non-linear equality constraints
on the planar angles guarantees the validity of the parameterization. These
constraints however do not prevent the boundary from self-intersection. Hence
a post-processing of the flat mesh is needed to handle edge crossings at the
boundary. Each post-processing step first identifies the nodes causing intersec-
tions in the flat mesh, then it adds constraints on the local configurations in
order to avoid intersections. The flat mesh is recomputed as a solution of the
updated nonlinear system. The post-processing algorithm is repeated until no
more intersections are found.

2 Overview

In this paper, we discuss several approaches to effectively reduce the com-
putational effort involved in Angle Based Flattening and discuss algorithms
to effectively solve the parameterization problem. The complexity of the con-
strained optimization problem raised in the ABF method makes finding a
solution in reasonable time a very challenging problem. Several numerical
schemes have been proposed to speed up the convergence of the original al-
gorithm [18] by using preconditioning [14] and smoothing [19]. We take a
completely different approach by identifying the main reasons that hinder
convergence within the setting of the constrained problem itself. In fact, the
post-processing might be very expensive as it tries to find intersections and
then solve the whole non linear system as many times as needed.We take
advantage of a characterization of convex planar drawings of tri-connected
graphs to eliminate boundary intersections in the first place. This way we
can steer or even avoid post-processing. Having this characterization in hand,
it can be used in association with different objective functions that reflect
the criteria we would like to minimize. Such functions can be described as
the angular distortion [18] or the MIPS energy introduced by Hormann and
Greiner [12] as both can be expressed completely in terms of angles.

The non-linear equations in the ABF method lead to a dense sparsity pat-
tern of the Hessian matrix of the system which increases the computational
cost. We show how the convergence can be improved alternatively by a simple
yet effective transformation of the problem that relaxes the non-linear equality
constraints. In fact, the Hessian becomes diagonal and its sparsity pattern be-
comes independent of the valences of the vertices of the input mesh. Since, the
system of equations is symmetric we opt for the more appropriate symmetric
numerical solvers instead of the non-symmetric ones proposed in [18, 19, 14].
We propose a practical approach that achieves fast convergence by finding
approximate solutions which yield a low angular distortion.
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3 Conventions

Throughout the paper, we try to restrict ourselves to the essential amount of
formalism only, where the following notations are used:

• N is the total number of interior mesh angles.
• α∗

i (i = 1, . . . , N) denote the angles of the original mesh,
• αi are the corresponding angles of the flat mesh. As these are the variables

of the optimization problem, then in this context, the more usual notation
xi is used as an alternative.

• v denotes the central vertex in a centered drawing of a wheel, i.e. of its
1-neighborhood. d is the number of direct neighbors of v or its valence. αj

(j = 1, . . . , d) refer to the angles at v, while βj and γj denote the opposite
left and right angles of a face with central angle aj , respectively. All faces
are oriented counter-clockwise.

• Variables and functions without subscripts may refer to multivariate vec-
tors as explained by the context.

4 Characterization of drawings of planar graphs

Sheffer and de Sturler [18] addressed the problem of the validity of the pla-
nar embedding by requiring the following consistency condition on the set of
positive angles of the planar mesh:

• Vertex consistency

For each internal vertex v, with central angles α1, . . . , αd:

d
∑

i=1

αi − 2π = 0 (1)

• Triangle consistency

For each triangular face with angles α, β, γ the face consistency:

α + β + γ − π = 0 (2)

• Wheel consistency

For each internal vertex v with left angles β1,..,βd and right angles
γ1, . . . , γd:

d
∏

i=1

sin(βi)

sin(γi)
= 1 (3)

These conditions guarantee the centered embedding of internal vertices
without overlapping of interior edges. However they do not prevent the
overlapping of boundary edges. This issue is a well-studied problem in
graph theory [4, 9]. Di Battista and Vismara provide a characterization
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(a) (b) (c) (d)

Fig. 1. Flattening an α-shaped mode: (a) Original mesh. (b) The flattened mesh
with boundary control coefficient t = 2). (c) t = 1.1.(d) t = 1.03. (The
views are scaled differently.)

of the convex planar straight line drawing of a tri-connected graph for a
given set of positive angles [4]. Their minimal constraints for the planarity
of the graph impose in addition to (1),(2),(3) the following condition:

• Convex external face condition

For each external vertex v, with internal angles α1, . . . , αd:

d
∑

i=1

αi ≤ π (4)

Condition (4) guarantees the convexity of the boundary and hence pre-
vents boundary overlapping. Note that the inequality (4) prevents local
and global self-intersection simultaneously. So it does not only prevents
adjacent boundary edges from overlapping, but it also guarantees that the
boundary loop as a whole does not cross itself. For the local configuration
it would in fact be sufficient to require the following weakened condition
to hold:

• Adjacent boundary edges consistency

For each external vertex v, with internal angles α1, . . . , αd:

d
∑

i=1

αi ≤ 2π. (5)

This prevents adjacent boundary triangles from crossing each other. But, con-
dition (5) is not strong enough to globally enforce a valid mesh with no bound-
ary intersections as shown in Fig. 1.b.

To get a better understanding and better control of the boundary behavior,
we propose to multiply the left hand side by in (4) by a positive scalar t,
formally

d
∑

i=1

αi ≤ tπ. (6)
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The scalar t can be interpreted as boundary control coefficient that steers
the convexity of the boundary. A lower bound for this factor can be derived
using discrete curvature measure. Consider the angular defect of the flat mesh
can be expressed as:

n
∑

v=1

(π − Av) = 2π, (7)

where Av is the sum of angles at vertex v and n is the number of boundary
vertices. By a simple calculation, we establish the lower bound

t0 = 1 − 2/n.

The trivial case is a single triangle, its angles cannot be all smaller than π/3.
We experimented with different values for t, and summarize the following

interpretations that can be used as reference for choosing appropriate values
for t:

(a) (b) (c)

(d) (e) (f)

Fig. 2. Effect of the boundary control coefficient t on the 3-balls model. (a) Original
mesh. (b) Flat mesh for t ≥ 2 (ABF). (c) t = 1.05. (d) t = 1 (convex
boundary ABF). (e) t = 0.98. (f) t = 0.968

• t > 2 results in the classic ABF method without preconditioning. No adja-
cent edge overlapping or boundary self crossing is taken into consideration.
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• 1 < t ≤ 2 prevents adjacent edges from overlapping, but does not necessar-
ily prevent global self-intersections of the boundary loop. We experienced
such cases only for ”boundary-heavy” (w.r.t. ratio of boundary to inner
vertices, e.g. Fig. 1) surfaces with non-trivial geometry.

• t = 1 globally prevents the boundary loop from self-intersection for any
valid input mesh, note that this suffices to induce a convex boundary .

• t0 < t < 1 forces the boundary to become concave.

Figures 1 and 2 illustrate the behavior of the boundary for different val-
ues of t. We can take advantage of these facts in order to avoid an iterative
post-processing and thus have better control over the convergence of the con-
strained optimization problem. In the next sections we show how this problem
with the additional inequalities included can be solved efficiently.

5 Constrained optimization problem

A general approach to establish a surface parameterization consists of min-
imizing an objective function f(x) that quantifies distortion w.r.t. certain
quality criteria. As the validity of the flat mesh is guaranteed by the angle
constraints of section 4. A typical choice of such function consists of estab-
lishing an angle based objective function. Examples of such function are the
angular distortion [18]

f(x) =

N
∑

i=1

wi(xi − ai)
2

with the weights wi = 1
a2

i

. The variables ai represent the optimal angles of

the flat mesh, which are

ai =

{

α∗

i
2π

∑

d

i=1
α∗

i

around an interior vertex

α∗

i around a boundary vertex

or the MIPS energy function, that can be written completely in terms of
angles [7]

f(x) =

#triangles
∑

i=1

cot αi cot α∗

i

We can now formulate the optimization problem as

minimize f(x)
subject to h(x) = 0

g(x) ≤ 0,
(8)

where g and h are multivariate functions of the equality (1),(2),(10) and the
inequality constraints (6) respectively.
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6 Solving the optimization problem

Large constrained optimization systems of the form (8) are still open problems
in the field of non-linear optimization [2]. The adequacy of a minimization
method depends on the properties of the objective function as well as on the
constraints.

In order to solve the optimization problem we use the method of Lagrange
multipliers as it guarantees the exact satisfaction of constraints. We handle
the inequality constraints by means of the so called active set approach, a
variant of Newton-like methods. It transforms inequalities to equalities which
are generally easier to handle.

The active set is defined as the set of indices for which the inequality
constraint (4) is active. Formally

A(x, µ) = {i|gi ≥ −
µi

c
, i = 1, ..., r}

where µi is the Lagrange multiplier associated with gi, and c is a fixed positive
scalar.

The active set approach converts inequality constraints to equality con-
straints by altering the Lagrange multipliers associated with them. If a con-
straint does not figure in the active set, its associated multipliers are set to
zero. Otherwise it is treated as an equality constraint. The numerical advan-
tage of this method is that as the iterates get closer to the solution, the active
set becomes more and more stable. A detailed description of the active set
method can be found in [1].

In every Newton iteration the following system is solved





∇2
xxL JT

h JT
g

Jh 0 0
Jg 0 0









∆x
∆µh

∆µg



 = −





∇xL
h
g



 (9)

where the Lagrangian L is given by

L = f(x) + µT
h h(x) + µT

g g(x).

In the classic ABF algorithm, the computation of the Hessian matrix ∇2
xxL

involves finding the second derivatives of the products involved in condition
(3). The resulting matrix is sparse, but it still contains a considerable num-
ber of non-zero elements (cf. Fig. 3(a)). This number depends largely on the
valences of the input mesh vertices.

Instead, we propose to use a modified wheel condition (10). Since the angles
are strictly positive we can safely rewrite condition (3) as

d
∑

i=1

log (sinβi) − log (sin γi) = 0. (10)
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Fig. 3. System matrices of equation (9) generated from the ear model using the (a)
original wheel condition. (b) simplified wheel condition. The Diagonal Hes-
sian brought the number of nonzero elements from 100044 down to 47607.

The virtue of this modification resides in the fact that it yields a diagonal
Hessian matrix.

∇2
xxL = diag(f ′′(xi) + mi

−1

sin2(xi)
)

where mi is the linear combination of the Lagrange multipliers involved with
xi in condition (10). The amount of computation and effort by the iterative
solvers is hence reduced considerably. Fig. 3 illustrates the structure of a
typical system matrix and the improvement induced by the modified wheel

condition.
The system matrix is symmetric although not necessarily positive-definite,

with the additional advantage of having a diagonal Hessian. We can ex-
ploit this structure by using adequate iterative solvers such as MINRES or
SYMMLQ both developed by Paige and Saunders [15] for symmetric matri-
ces, instead of the non-symmetric GMRES and BiCGStab that were used
in [18, 14]. The latter solvers have higher cost per iteration and may suf-
fer form breakdowns or simply stagnate while MINRES and SYMMLQ have
a relatively cheap cost per iteration, which is just 4 axpys(The term axpy
denotes the addition of a scalar multiple of a vector to a vector i.e vec-
tor1+=scalar*vector2 ) higher than the iteration cost of the conjugate gradi-
ent method. Another alternative, which is relatively inexpensive, is the CGNR
algorithm introduced by Hestens and Steifel [8]. In our case, the benefit is that
there is no need to transpose the system matrix as it is symmetric. The cost
per iteration then, is just one matrix-vector multiplication higher than the
cost of the conjugate gradient method. A comparison of the convergence of
these iterative solvers for typical meshes is given in section 8.
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(a) (b) (c) (d)

Fig. 4. Comparison of underdetermined (a, c) and minimization (b, d) solutions.

Note that the initial guess for the x is the set of the optimal angles
{ai|i = 1..n}. Consequently, at every Newton iteration the solution stays
within the positive domain. In order to guarantee that our algorithm does not
step into the negative domain, we can apply a similar technique as in [18] that
rejects negative iterates and appends increased weights to the corresponding
angles. However, our experiments with different meshes show that we hardly
ever run into this situation.

7 Practical Approach

In general, the method of Lagrange multipliers we use is a local optimization
method. This means that the solution it provides is a local minimum that is
largely dependent on the initial guess provided by the user. In other words it
is the closest minimum to the initial guess. Since the initial guess we provide
is very close to the solution as only few newton iterations are needed for
convergence. We can assume that any feasible point that is close to the initial
guess mentioned above gives a good estimate for the solution and would yield
a low angular distortion.

With this consideration in mind, The problem can be restated as how to get
a feasible point. The idea is to have a null objective function, i.e set f = 0. This
means that we reduce the problem to solving the under-determined system of
equality and inequality constraints. This change leads to considerable speed
up of convergence as there is no extra load form the objective function. In the
following, we call this solution the underdetermined solution and the one using
the angular distortion functional the minimization solution (literally speaking
both solution are just approximate solutions).

In general, the difference between the minimization and the underdeter-
mined solution is hardly noticeable. Fig. 4 shows a comparison between such
solutions. Table 2 shows the numerical difference w.r.t. angular distortion be-
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(a) (b) (c)

Fig. 5. Textured models: (a) Clumpy (c) Large ear(b) and (d) Mechanical part.
Notice the quasi-conformality of the parameterization.

tween the two methods. The latter method seems to outperform the minimiza-
tion method as it converges much faster. Table 1 summarizes the performance
of both methods.

If we are looking only for a topological mapping of the mesh to the plane,
we can get a very fast feasible solution by setting the initial guess to zero and
the objective function to zero. This solution does not reflect the geometry of
the mesh and might not suited for texture mapping.

Another alternative method for finding a feasible point would be to use
least squares methods for solving underdetermined nonlinear problems. How-
ever, as these methods do not guarantee the exact satisfaction of the con-
straints for large problems, they failed in general to produce valid parameter-
izations.

8 Results and Discussion

We applied our algorithm to a set of different triangular meshes. Table 1
summarizes the numerical results of our method, all timings were measured
on a 1.7 GHz Intel Xeon CPU. The parameterization time depends on the
number of triangles, on the geometry as well as on the connectivity of the
input mesh. For consistency with the original ABF we use the same metrics
as in [19] to measure angular distortion. The numerical data suggests that the
underdetermined method in association with the CGNR algorithm delivers
high quality quasi conformal parameterizations in very competitive time.
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CGNR SYMMLQ MINRES
model minim. under. minim. under. minim. under.

3 Balls (10324) 66 1 21 2 7 2

Ear (17964) 159 3 44 9 11 7

Man head (54204) > 900 26 292 69 126 56

Mech. part (79384) > 999 86 > 999 245 > 999 192

Large ear (249144) > 999 237 > 999 654 > 999 522

Table 1. Comparison of runtime (in seconds) of the minimization and underdeter-
mined method using different iterative solvers.

CGNR SYMMLQ MINRES
model minim. under. minim. under. minim. under.

3 balls 0.106 0.137 0.106 0.137 0.106 0.137

ear 0.001 0.001 0.001 0.001 0.001 0.001

man head 0.002 0.002 0.002 0.002 0.002 0.002

Mech. part 0.002 0.002 0.002 0.002 0.002 0.002

Large ear 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Table 2. Comparison of angular distortion induced by the minimization and the
underdetermined method using different iterative solvers.

9 Conclusion

We presented and discussed several extensions to angle based flattening. With
additional inequality constraints we can eliminate global and/or local bound-
ary self-intersections. This leads to a nice interpretation of boundary behavior
through the introduction of the new boundary control coefficient. While its
use initially targets on the avoidance of an iterative post-processing, we see
potential use for optimizing the parameterization w.r.t. this coefficient vari-
able.

The arising non-linear constrained optimization problem can be solved
efficiently. With a simple and intuitive transformation we take advantage of a
simply structured symmetric system matrix, enabling the application of robust
iterative solvers. The use of our underdetermined system solution leads to a
relatively fast method for generating angle based parameterizations.
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