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Abstract

In this paper, we derive an efficient approach for
solving the optimization problem which arises in
Angle Based Flattening. As the size of system ma-
trix associated with the ABF blows up to a size ap-
proximately five times the number of faces, finding
a solution for reasonably sized triangular meshes
becomes a challenging problem. We propose two
iterative approaches to overcome these limitations.
The first approach is based on the fact that decou-
pling the system yields a much easier matrix equa-
tion. This enables an iterative approach for carrying
out the computations. The second approach is based
on the analysis of saddle point problems. We derive
a modified Uzawa algorithm for efficiently address-
ing the numerical optimization problem.

1 Introduction

Surface parameterization studies the embedding of
3D surface meshes into the plane. In a typical set-
ting, the given surface is homeomorphic to a disc.
The rareness of isometric mappings induced a large
focus on conformal maps. A wide range of the ex-
isting methods relies on the discretization of the
Laplace equation in order to establish the embed-
ding given appropriate boundary conditions, see [9]
for a comprehensive survey. One major drawback
of these methods is that the treatment of the bound-
ary does not reflect the behavior of the original sur-
face boundary. This may be of importance when
the original boundary cannot be approximated by a
convex polygon. While pseudo-conformal parame-
terizations such as [4, 6, 12, 13, 16] propose several
schemes to minimize angular distortion, it seems
natural to formulate the problem in terms of inte-
rior angles of the flat mesh. This leads to the An-
gle Based Flattening (ABF) method introduced by

Sheffer and de Sturler [17]. The ABF algorithm
constructs the parameterization by solving a con-
strained optimization problem where the objective
function controls the angular distortion of the pla-
nar mesh w.r.t. the angles of the original mesh. A
set of linear and non-linear equality constraints on
the planar angles guarantees the validity of the pa-
rameterization.

2 Overview

In this paper, we derive an efficient approach for
solving the optimization problem which arises in
Angle Based Flattening. As the size of system ma-
trix associated with the ABF blows up to a size ap-
proximately five times the number of faces, finding
a solution for reasonably sized triangular meshes
becomes a challenging problem. Several numeri-
cal schemes have been proposed thus far to speed
up the convergence of the original algorithm [17]
by using preconditioning [14], smoothing [18] and
sparsity pattern improvement [21].

We note that the use of a hierarchical approach
is excluded due to the fact that providing an initial
valid solution as an initial guess would already sat-
isfy the constraints and hence it is local minimum.
So the system will not evolve or find another min-
imum. The main choice left is to develop efficient
numerical methods to efficiently solve the arising
optimization problem.

We propose two iterative approaches. The first
approach is based on the fact that decoupling the
system yields a much easier matrix equation. This
enables an iterative approach for carrying out the
computations. The second approach is based on the
analysis of saddle point problems. We propose a
modified Uzawa algorithm for efficiently address-
ing the numerical optimization problem. The key
ingredient for both methods is the decoupling of the
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Figure 1: Textured letter and number models: (a) 2, (b) V, and (c) X. Notice that the parameterization of
these surfaces on a square or a circle may yield high distortion.

matrix equations.
The rest of the paper is organized as follows, after

introducing the notation, we briefly review the setup
of the ABF approach in section 4, the optimization
problem in section 5, and the diagonalization of the
sparsity pattern improvement of the system matrix
in section 7. In section 7 we propose two efficient
numerical methods for the solving the matrix equa-
tions as the main contribution. We discuss the re-
sults in 8.

3 Conventions

In order to simplify the ensuing discussion, we first
introduce the following notation:

Given a triangular mesh
• N is the total number of interior mesh angles.
• α∗

i (i = 1, . . . , N ) denote the angles of the
original mesh.

• αi are the corresponding angles of the flat
mesh. As these are the variables of the op-
timization problem, then in this context, the
more usual notation xi is used as an alterna-
tive.

• v denotes the central vertex in a centered draw-
ing of a wheel, i.e. of its 1-neighborhood. d

is the number of direct neighbors of v or its
valence. αj (j = 1, . . . , d) refer to the an-
gles at v, while βj and γj denote the oppo-
site left and right angles of a face with central
angle aj , respectively. All faces are oriented
counter-clockwise.

• Variables and functions without subscripts
may refer to multivariate vectors as explained
by the context.

4 Characterization of drawings of pla-
nar graphs

The problem of guaranteeing the validity of the pla-
nar embedding of a mesh solely based on angles
was addressed by Sheffer and de Sturler in [17].
The set of positive angles of the planar mesh should
meet the following consistency conditions:

• Triangle consistency
For each triangular face with angles α, β, γ

the face consistency:

α + β + γ − π = 0 (1)

• Vertex consistency
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Figure 2: System matrices of equation (5) generated from the ear model using the (a) original wheel con-
dition. (b) simplified wheel condition. The diagonal Hessian brought the number of nonzero
elements from 100044 down to 47607.

For each internal vertex v, with central angles
α1, . . . , αd:

d
∑

i=1

αi − 2π = 0 (2)

• Wheel consistency
For each internal vertex v with left angles
β1,..,βd and right angles γ1, . . . , γd:

d
∏

i=1

sin(βi)

sin(γi)
= 1 (3)

These conditions ensure the centered embedding
of internal vertices without overlapping of interior
edges. However they do not prevent the overlap-
ping of boundary edges. The problem of drawing
angle based graphs is well-studied problem in graph
theory [5, 11]. Di Battista and Vismara [5] provide
a characterization of the convex planar straight line
drawing of a tri-connected graph for a given set of
positive angles. Their minimal constraints for the
planarity of the graph includes (1),(2),(3) and re-
quire the additional condition that all exterior an-
gles should be (less than π). Zayer et al. [21] dis-
cuss the solution of the ABF problem including this
condition and allow direct control over the bound-
ary behavior of the planar mesh using an active set
approach to handle the additional inequality con-
straints.

5 Constrained optimization problem

A general approach to establish a surface parame-
terization consists of minimizing an objective func-
tion f(x) that quantifies distortion w.r.t. certain
quality criteria. As the validity of the flat mesh is
guaranteed by the angle constraints of section 4. A
typical choice of such function consists of establish-
ing an angle based objective function [17]

f(x) =

N
∑

i=1

wi(xi − ai)
2

with the weights wi = 1

a2
i

and the variables ai rep-
resent the optimal angles of the flat mesh, which are

ai =

{

α∗

i
2π

∑

d

i=1
α∗

i

around an interior vertex

α∗

i around a boundary vertex

We can now formulate the general optimization
problem as

minimize f(x)
subject to h(x) = 0

(4)

where h represents the multivariate functions of the
equality constraints (1),(2),(3). It should be noted
that if inequality constraints are used in order to
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Figure 3: Textured models: (a) mannequin (c) ear (b) and (d) foot. Notice the pseudo-conformality of the
parameterization.

control the boundary behavior, it is possible to con-
vert them into equality constraints using an active
set approach by altering the Lagrange multipliers
associated with them. If a constraint does not figure
in the active set, its associated multipliers are set
to zero, otherwise it is treated as an equality con-
straint. The numerical advantage of this method is
that as the iterates get closer to the solution, the ac-
tive set becomes more and more stable. A detailed
description of the active set method can be found
in [1].

6 Optimization problem setup

The efficient solution of large constrained optimiza-
tion systems of the form (4) is still an area of ac-
tive research and offers several open problems in the
field of non-linear optimization [3]. The adequacy
of a minimization method depends on the proper-
ties of the objective function as well as on the con-
straints.

In order to solve the optimization problem we
use the method of Lagrange multipliers as it guaran-
tees the exact satisfaction of constraints. The aris-
ing optimization problem is solved using a Newton
method in order to guarantee full satisfaction of the
constraints. Additionally a line search is used to
guide and enhance the iterative steps.

In every Newton iteration the following system is

solved
[

∇2
xxL JT

h

Jh 0

] [

∆x

∆µh

]

= −

[

∇xL

h

]

(5)

where the Lagrangian L is given by

L = f(x) + µ
T
h h(x).

In the classic ABF algorithm, the computation
of the Hessian matrix ∇2

xxL involves finding the
second derivatives of the products involved in con-
dition (3). The resulting matrix is sparse, but it
still contains a considerable number of non-zero el-
ements (cf. Fig. 2(a)). This number depends largely
on the valences of the input mesh vertices.

Instead, we use the modified wheel condition (6)
introduced in [21]. As the angles are strictly posi-
tive we can safely rewrite condition (3) as

d
∑

i=1

log (sin βi) − log (sin γi) = 0. (6)

The advantage of this modification resides in the
fact that it yields a diagonal Hessian matrix.

∇2
xxL = diag(f ′′(xi) + mi

−1

sin2(xi)
)

where mi is the linear combination of the Lagrange
multipliers involved with xi in condition (6). The
amount of computation and effort by the iterative
solvers is hence reduced considerably. The Hes-
sian can be computed efficiently as this reduction
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also avoids the estimation of complex derivatives
with all the floating error they may induce. Fig. 2
illustrates the structure of a typical system matrix
and the improvement induced by the modified wheel
condition.

7 Solution of the matrix equation

In this section we introduce our main contribution.
Our approach relies on the analysis of the structure
of the system matrix S in (5). In most previous ap-
proaches [17, 14, 18, 21] the problem is treated by
feeding the matrix to an iterative solver in a black
box fashion. Keeping the modified wheel condition
in mind we take advantage of the underlying system
structure in order to decouple the system into two
simpler matrix equations. In fact, the optimization
problem at hand can be restated as the following
general matrix system

Ax + Btλ = f,

Bx = g.
(7)

In our ABF setting (5) the matrix A is the diagonal
Hessian and B is the sparse Jacobian matrix associ-
ated with the equality constraints. Then the system
matrix S can be expanded as

S =

[

A 0
B I

] [

A−1 0
0 M

] [

A Bt

0 I

]

,

(8)
where M = BA−1Bt. According to Sylvester’s
law of inertia the eigenvalues of S are the same as
the eigenvalues of A and M . This suggests that
the system is highly indefinite as both A and M

are not positive definite. The alternative approach
to directly dealing with S is to decouple the sys-
tem equations in order to reduce the computational
effort.

7.1 First approach

Since the matrix A is diagonal, its inverse is ob-
tained easily. The problem (7) now reduces to solv-
ing the following system of equations

x = A−1(f − Btλ),
BA−1Btλ = BA−1f − g.

The matrix M = BA−1Bt is symmetric, how-
ever it is not necessarily positive definite in gen-
eral. This rules out the existence of a unique so-
lution as the matrix might be singular. The sys-
tem can be solved using the MINRES algorithm

which is the equivalent of the conjugate gradient
method for general symmetric matrices. The ad-
vantage of using MINRES over other existing iter-
ative algorithms resides in the fact that it converges
for definite, indefinite or singular cases and avoids
break ups or stagnation [15]. Since the matrix size
might be large when dealing with large meshes, it is
not desirable to directly perform the matrix-matrix
multiplication unless an efficient matrix package
is accessible. The algorithm can be implemented
without explicit computation of the matrix M , this
is achieved by doing matrix-vector multiplication
within the MINRES method especially that the ma-
trix A is diagonal.

This method reduces the size of the matrix prob-
lem to a smaller matrix problem of only approxi-
mately twice the number of triangles in the mesh.

7.2 Second approach

In the following we rely on the similarity of the sys-
tem equation (7) with general saddle point prob-
lems. In saddle point problems, the matrix A is
in general positive definite which is not the case in
our setting. However, we have the advantage that
the inverse of A is immediate. A widely used ap-
proach for solving saddle point problems relies on
the Uzawa algorithm [19]. We cannot apply the
Uzawa algorithm directly as it depends on the con-
dition number of the matrix M . As an alternative
we take advantage of direct inversion of matrix A

for using the conjugate directions [2]. This yields
the following algorithm:

1. Initialize
x0 = A−1(f − Btλ),
d0 = Bu0 − g,q0 = −d0.

2. Repeat until convergence

• pk = Btdk, hk = A−1pk,

• αk = <qk,qk>

<pk,hk>
,

• λk+1 = λk + αkdk,

• xk+1 = xk − αkhk, qk+1 = g −Bxk+1

• βk =
<qk+1,qk+1>

<qk,qk>
,

• dk+1 = −qk+1 − βdk

It should be noted that the matrix multiplications
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MINRES Uzawa
Ear (17964) 3 1

Man head (54204) 26 18

twists (6K4) 2 1

Goldfeather (10K4) 16 7

Goldfeather (24K4) 74 31

foot (20K4) 346 115

Table 1: Runtimes (in seconds) using different it-
erative solvers. For most models, 3 to 4 Newton
iterations were needed.

involving the diagonal matrix A should be treated
as element by element multiplication, the matrix A

can be stored as a vector.

8 Results and Discussion

We applied our algorithm to a set of different tri-
angular meshes. All experiments were conducted
on a 1.7 GHz Intel Xeon CPU. The parameteriza-
tion time depends on the number of triangles, on
the geometry, as well as on the connectivity of the
input mesh. For most meshes the parameterization
takes few seconds to few minutes. We summarize
results in table (8). Our measurements rely on a
simple matrix library, and we expect our algorithms
to perform much faster using highly optimized ma-
trix packages.

We observe that the Uzawa algorithm outper-
forms the MINRES in our experiments. In general,
the decoupling of the system equations provides an
efficient mean for improving the convergence.

9 Conclusion

We presented and discussed the non-linear con-
strained optimization problem arising in in The
ABF parameterization. We take advantage of the
structure of the system matrix in order to decou-
ple the problem and we end up with much easier
matrix equations to solve. The use of a modified
version of the Uzawa algorithm-typically used in
saddle point problems allows to efficiently solve the
matrix equations.
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Figure 4: Textured implicit surfaces and their corresponding planar embedding: (a+d) Goldfeather sur-
face [10], (b+e) ring cyclide, (c+f) twists.
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